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ABSTRACT

Cell componentmaterials were sterilized at 145°C. for 36 hours in

sealed containers in 40%potassium hydroxide to determine their ability to

withstand sterilization. The effect of a component's degradation products

was determined primarily by filling cells of standard construction with the

electrolyte obtained from the sterilized cell componentand noting cell

electrical characteristics. Positive and negative plates were sterilized

independently and assembled into cells with unsterilized materials. These

tests indicated that the prime cause of failure was due to degradation
products from the separator materials.

Teflon and polyethylene base separator materials supplied by Radiation
Applications Incorporated survived sterilization. The sterilized materials

were built into cells and the polyethylene base material produced the best

results; however, when sterilized in situ cell capacity was decreased by
50%. The cell testing phase was modified and expandedin place of battery

testing. It was discovered that the positive plates were primarily attacked
by the separator degradation products, and cells were redesigned to minimize

the effect of attack by degradation products.

Redesigned cells gave fair performance with about a 10-20%loss in

capacity even in the presence of the degradation products, but a stand life

of nine to twelve months is questionable.

Three types of nylon, Penton and Celcon were investigated as possible

case materials. Initial testing indicated that nylon (?.ytel 38) was the

most suitable case material and that phenol was the best of four methods

investigated for sealing nylon.

Molds were madefor a redesigned case, which could be used to mold
nylon, Celcon and Penton. Pressure tests on cell cases indicated that the

nylon case should survive sterilization; however, unde_ actual sterilization

conditions, cells with the nylon cases broke at the corners about 50%of the
time.

Two problems remain: one, a case is needed which is capable of surviv-

ing sterilization; two, a superior separator material is required. The

latter problem is considered to be the most difficult at present.
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I. Introduction

This report covers the investigation of secondary silver oxide-zinc

cells and cell components to determine their ability to survive heat

sterilization at 145°C for 36 hours. In a previous investigation it was

found that secondary silver oxide-zinc cells would survive sterilization

at 125°C. for 36 hours; however, when the sterilization temperature was

raised to 145°C., sterilized cells yielded less than 50% of their rated

capacity and voltage characteristics were about 0.3 volts lower than that

of control cells (1! Poor cell performance was suspected to be due to the

degradation products of the separator and/or case materials.

This investigation was initiated to determine which cell components

were responsible for poor cell performance and those that would survive

the sterilization environment. If the plate materials alone failed to

withstand the sterilization environment, the program would be dropped. If

the case and/or separator material degradation products were responsible

for poor cell performance, attempts were to be made to find replacements.

II. Cell Component Evaluation

To determine which cell components were being affected by the sterili-

zation environment, the various components were sterilized individually in

electrolyte in stainless steel containers. All components except the plate

materials were sterilized in approximately 300 milliliters of 40% potassium

hydroxide solution. With the exception of the separator materials supplied

by Radiation Applications Incorporated (R.A.I.) the quantity of material

sterilized was representative of the quantity needed to construct three cells.

The liquor from the sterilized cell components was used to activate new

cells of standard construction which were rated to yield a nominal capacity

(I) R. S. Bogner, Final Report under J. P. L. Contract Nr. 950177,

October 15, 1962



of 25 ampere-hours when discharged at the three-hour rate (nine amperes).

The cells were constructed the same as those tested under Jet Propulsion

Laboratory Contract Nr. 950177. The cells contained six positive plates

and seven negative plates. The cells were designed for cycle life and

the positive-to-negative plate active material ratios were 1:2 based on

100% theoretical Faradaic efficiency. The separator system consisted of

one layer of dynel next to the positive plates and three layers of Visking's

fibrous sausage casing. The effect of the degradation products from the

sterilized materials was determined by discharging the cells at the three-

hour rate at room temperature and noting the capacity, voltage, and by

cycling and determining life of the cells in comparison to control cells

on cycle. The cells were recharged at 1.25 amperes to 2.1 volts.

These tests were made on three cell groups.

The sterilization containers were formed from 1/16 inch stainless steel

sheet and welded across the bottom and up two sides. After welding, the

cans were leak tested on a Veco leak detector. The material to be steril-

ized was placed in the container and the cover welded on. The cans were

again leak checked. The covers contained a stainless steel fitting for

attachment of a pressure gauge. Marshall Town pressure gauges calibrated

from zero to 100 psi were used to measure pressures during sterilization.

An assembled sterilization container is shown in Figure I.

A. Plate Materials

In order to continue this program, it had to be determined whether

or not the positive and negative plate materials were capable of sur-

viving the sterilization environment. In these tests actual plates or

the plate materials were sterilized at 145°C. for 36 hours submerged

in a 40% potassium hydroxide solution.

1. Positive Plate

Twenty positive unformed silver plates were sterilized in

stainless steel cans. After sterilization the plates were washed,

dried, and assembled into three cells with unsterilized negative



plates and separators. The cells were activated with 85 milliliters

of fresh 40%potassium hydroxide solution and cycled. Figure 2

shows the capacity and cycle life of the cells. The voltages on
charge and discharge were comparable to the control cells. From

the data it is concluded that unformed positive plates are not de-

graded when sterilized only in the presence of electrolyte.

2. Negative Plate

Negative plates were madeby the standard procedure by press-

ing zinc oxide on a silver grid and sterilized in the stainless

steel containers submergedin a 40%potassium hydroxide solution.

The plates appeared to survive sterilization; however, the Viscon
paper wrap was somewhatdegraded. The negative plates could not be

washedand dried because the zinc oxide would wash away. The steril-

ized negative plates were assembled into three cells with unsterilized

separators and positive plates. The cells were activated with 85

milliliters of fresh 40%potassium hydroxide and cycled at the
three-hour rate.

In Table S it will be noted that the pressure developed during

sterilization of the negative plates was in excess of 100 psig. Be-

cause of this high pressure, it was decided to try two additional

experiments to determine what constituents of the negative plates

were producing the pressure. In one test, the plates were built by
the standard method except the polyvinyl alcohol binder was omitted.

In the other test only a mixture of the negative material powder

(zinc oxide and mercuric oxide) was sterilized in potassium hydroxide.

As noted in Table 1, the negative plates without the polyvinyl

alcohol produced a maximumpressure of 62 psig while the active

material mix produced a pressure of 32 psig. From these results

it is concluded that both the polyvinyl alcohol and the Viscon

paper wrap on the negative plates contribute to the pressure build up.

Three sets of three cells each were assembled with unsterilized

separators and positive plates with the three variations of sterilized



negative material. Figure 2 shows the cycle and capacity data

for the three sets of cells made from the three variations in

negative plates. It is understood, of course, that the negative

material mix had to be made into plates after sterilization.

From the results of the negative plate tests, it is concluded

that the negative plates are not appreciably affected by the

sterilization procedure. Furthermore it is concluded that the

polyvinyl alcohol binder can be removed from the plates without

significantly affecting their cycle life as tested. By removing

the polyvinyl alcohol, the total pressure developed in a cell

during sterilization can be reduced and will enhance the pos-

sibility of getting cells through sterilization without bursting

the cell case.

B. Separator Materials

It was suspected that separator degradation products were parti-

ally responsible for the poor cell performance after sterilization;

therefore, it was proposed to sterilize available separator materials

and use the liquor to activate standard cells as previously described.

I. Available Separator Materials

The materials tested were as follows:

a. Fibrous sausage casing #7 (FSC) produced by the Food

Products Division of Union Carbide Corporation. The mater-

ial is a regenerated cellulose on a backing of hemp fibers.

The casing is desulfured and deglycerinized.

b. Permion 600 (P-600) produced by Radiation Applications

Incorporated. The material is cellophane with radiation

induced copolymer graft of styrene acrylonitrile.

c. Dynel 470, produced by The Kendall Company, is a non-

woven fabric of fibers made from acrylonitrile monomer.

The pressures developed by the separator materials during

sterilization are recorded in Table I. The maximum pressures were:

FSC, 54 psig; Dynel, 55 psig; Permion 600, 57 psig. The liquor from



the FSCwas colored dark amberand its odor suggested the presence

of an ester. The sterilized material was quite fragile and could

not be easily handled without tearing. The liquor from dynel was
light amber in color and had a strong ammonical odor. The dynel

was more fragile than the FSCand very easily torn. The liquor

from Permion 600 was dark amberand had a strong ammonical odor
which seemedto maskanother odor. Permion 600 was not as

easily torn as FSCbut it was too fragile to handle to build cells.

Nine cells, three each, were filled with 85 milliliters of

the liquor from each of the three separator materials sterilized

and put on cycle tests. Cells filled with the liquor from
Permion 600 had discharge voltages very similar to the control

cells and their capacities were about five ampere-hours lower

than the control cells as shownin Figure 3. This represents

about a 20%loss in capacity. The cells filled with the liquor
from the sterilized P-6OOwere removedfrom test at 27 cycles be-

cause of low capacities (13 ampere-hours).

The chief effect of the liquor from dynel was that the

divalent silver voltage waspractically absent as shownby the

discharge curve in Figure 5. As shownby the capaclty/cycle

curve in Figure %, the liquor from dynel did not have an appre-
ciable effect on cycle life.

As shownby the discharge curve in Figure 5, the cells

filled with the liquor from fibrous sausage casing yielded about

nine ampere-hours whendischarged to I .2 volts. The discharge
voltage was very poor in that it was about 0.3 volt lower than

the controls. The cells were given a few cycles to determine if

their capacities would increase. The capacity did not increase
and the cells were removedfrom test.

Later one of the cells filled with the liquor from sterilized

FSCwas charged and discharged to attempt to determine if the neg-

ative or positive plates were affected by the sterilization liquor.

A strip of zinc was used as a reference electrode. The electrolyte

level was about midway to the tops of the plates so the zinc strip



could not be immersedin free electrolyte and consistent readings

were difficult to obtain. From the discharge potentials, it

appeared that the negative plates were limiting cell capacity.

However, on charge at two amperesthe positive plates were found
to be charging at a potential of over 2.2 volts with reference to

the minc strip. An adequate explanation is not readily available

for this strange behavior, but it might be related to the placement

of the reference electrode in the cell which was at the top of the

plates and to the fact that the plates do not charge and discharge

evenly. This cell was not torn down at the time, but it has been

observed that the lower portion of the plates can be discharged

while the upper portion still contains charged material. A similar
situation was pointed out by Dr. G. A. Dalin(1! Relying more on the

charge data than the discharge data, it was surmised that low cell

capacity was due to the positive plate. As discussed later, it was
found that this hypothesis was correct.

Since the odor of ammoniawas detected in the liquors from dynel
and Permion 600, a test on a single cell was madeto determine the

effect of ammonia. A cell was filled with a solution of 40 milli-

liters of concentrated ammoniumhydroxide and %5milliliters of 40%

potassium _ydroxide solution. During charge the cell voltage never

got above 1.5 volts and the cell self-discharged overnight, thus
demonstrating the harmful effect of ammoniain large concentrations.

2. NewSeparator Materials

Before this program was initiated, it was surmised that separa-

tors might be the chief reason for cell failure, and Radiation Appli-

cations Incorporated was contacted about the possibility of obtaining
separator materials or membranesthat would survive the sterilization

(I) Orientation Conference on Heat-Sterilization of Silver-Zinc Batteries,
held at Delco-Remy, June 3, 196%



environment. Radiation Applications Inc. indicated that they
might be able to make some suitable materials that would be

relatively stable in the sterilization environment.

The following separator materials were prepared by Radiation

Applications Inc. and supplied to Delco-Remy for evaluation:

R.A.I. Nr. Senarator Material

155-79-3 Teflon (TFE) with acrylic acid graft (AA)

155-85 Teflon (TFE) with methacrylic acid graft (MAA)

155-79-5 Teflon (TFE) with sulfonated styrene graft

157-87 Crosslinked high density polyethylene with

acrylic acid graft (XLHDFE-AA)

157-92 Crosslinked high density polyethylene with

methacrylic acid graft (XLHDPE-MAA)

Fifteen square feet of each type of material was received.

It was decided that the best method to screen test these mater-

ials was to use half of the material to build a control cell and

sterilize the other half and build a cell from the sterilized

material. Half of each sample was sterilized in a stainless

steel container filled with about 200 milliliters of 40% potas-

sium hydroxide. The pressures developed during sterilization are

recorded in Table 2 and were about equal to the pressures calcu-

lated from the partial pressures of air and potassium hydroxide,

indicating little or no volatile products were produced.

After sterilization the membranes were washed and dried, and

the sulfonated styrene graft on teflon was the only sample which

could not be used to build a cell. After drying the sulfonated

styrene graft on teflon became quite brittle and could not be

handled without splitting. One cell each was assembled from the

other four sterilized samples. The cells were built from standard

plates (six positives and seven negatives) with four layers of

separator between the plates. A .200 inch thick shim was used in

the cells because of the difference in thickness between the R.A.I.

separators and the fibrous sausage casing separators. The cells

7



were activated with 70 milliliters of 40%potassium hydroxide

solution and cycled by charging at 1.25 amperesto 2.1 volts

and discharging at 9 amperesto 1.3 volts. Data on the test

and control cells are shownin Figures 6, 7, and 8.

Twocells were activated with the liquor from the steril-

ized sample of AA on teflon. On cycling the cells delivered

around 25 a.h. and gradually dropped below 15 a.h. after 85

cycles as shown in Figure 4.

Based on the initial data it appeared that the teflon base

materials were quite good, but on cycling it soon becameappar-

ent that the teflon base separators were inferior to the cross-

linked high density polyethylene base separators. The meth-
acrylic acid graft on teflon control cell failed on the fifteenth

cycle due to a short while the sterilized sample failed on the

eighth cycle also due to a short. The cells containing the

acrylic acid graft on teflon gave about twice the life of the

methacrylic acid graft with the control cell failing at 26 cycles

and the sterilized sample failing at fifteen cycles due to shorts.

In the case of the crosslinked high density polyethylene base

materials, the sterilized sampleswere better than the controls in

cycle life, capacity and voltage. Although it was apparent from

the data that sterilization did something to the materials, it

appeared to be beneficial to cell performance. From the cell per-

formance data it appeared that the crosslinked high density poly-
ethylene materials should produce cells that could be sterilized

and 120 foot samples of the material with each type of graft were
ordered for further evaluation in cells.

Various parameters were measuredon sterilized and unsterilized

separator samples in an attempt to get additional data that could be

used to predict what properties were needed to yield an adequate

separator material. The properties measuredby R.A.I. are shownin

Table 3 and those measuredat Delco-Remyare shown in Table 4. Based

on the cell results and the data in the tables, it becomesquite

apparent that at best the various parameters measured can only be



used to makea broad qualitative Judgmentand not to accurately
predict how the material will behave in cells.

The procedures for determining resistivity, potassium

hydroxide diffusion, and zinc dendrite growth through the mem-

brane are discussed in detail in Delco-Remyengineering report

Nr. _SO-X, which was forwarded to J.P.L. with the proposal for

this program. A brief discussion of the various procedures,
however, is presented in Appendix I.

The Final Report of R.A.I's Development Program for the

preparation and testing of the experimental separator materials

is in Appendix II.

C. Case Materials

In the previous contract (Nr. 950177) the nylon case interior

showed very little evidence of alkaline attack after fully assembled

cells were sterilized at 125°C. for 36 hours. When fully assembled

cells were sterilized at 145°C. for 36 hours the interior of the nylon

case exposed to the alkaline electrolyte was severely spalled as shown

in Figure 9. It was thought that cell failure might have been due

partly to the degradation products from the nylon case; therefore, a

program was outlined to evaluate various nylons, coatings for nylon,

and other high temperature thermoplastics that might be suitable for

case materials.

1. Nylon

A trip was made to E. I. duPont deNemours and Company at

Wilmington, Delaware on June 28, 1963 to discuss the problems

of nylon degradation in hot caustic. DuPont's representatives

could not provide us with any data on the ability of their nylons

to withstand attack in potassium hydroxide at 145°C. They suggested

that we try Zytel 121, a hydrolysis resistant 6/6 nylon, and Zytel

38, a heat resistant 6/10 nylon. Originally we had been using

Zytel 101, a general purpose 6/6 nylon.

9



In order to determine if nylon degradation products impaired

cell performance, samples of Zytel 101, 121, and 38 molding pellets
were sterilized at 14_C for 36 hours in stainless steel cans in a

40%solution of potassium hydroxide. An adequate quantity of the

molding pellets was cooked to assure that it was representative of

the surface area of the interior of the nylon case. The pressures

developed in the cans during sterilization are shownin Table 2.

The maximumpressures were from 35 to 40 psig which indicates little

or no gaseous degradation products were produced. The liquors from

all three nylon samples contained somesuspended substance, but no

distinguishable odor was detected.

Visual examination of the sterilized nylon samples revealed

that all three types of nylons were attacked. Zytels 101 and 121

showedthe greatest attack in that their surfaces were severely
spalled. Zytel 38 showedthe least attack as its surface was only

slightly crazed. Figure 10 is a photograph of sometest bars which

were sterilized and used for seal testing and illustrates the dif-

ference in the severity of the surface attack on Zytels 101, 121,
and 38.

Nine cells of standard construction were assembled, and three

cells each were filled with 85 milliliters of the liquor from each

sample of sterilized nylon. The cells were formed and cycled as

previously described. The capacity and cycle data for each group

of cells are shownin Figs. 3 and 4. While there might be some

question that the liquor from Zytel 121 had a slight effect on

capacity and cycle life, it is quite evident that the cells con-

raining the liquor from Zytel 38 gave excellent results with all

three cells surpasing the performance of the control cells. From

this test it was concluded that the degradation products from

nylon were not the cause for poor cell performance.

Infrared analysis was attempted on the sterilized samples in

the Process Department Laboratory, but no useful infom_tion as to

the possible nature of the degradation products was obtained.

I0



2. Coating Material for Nylon

During the visit to duPont, the possibility of coating nylon

with somematerial to protect it from attack by potassium hydroxide

during sterilization was discussed. The duPont representatives said

it is very difficult to get any material to adhere to the surface of

nylon and that they could not recommer_any material that would be

satisfactory. In spite of duPont representatives remarks, it was
decided to check out the possibility of coating nylon as outlined

in the proposal. After somepreliminary experimentation, the Pro-

cess Department was able to produce what appeared to be good coat-

ings of two different materials on somenylon test strips. The

coating materials were Logo Clear EJ-2741 supplied by the Bee

Chemical Company,Lansing, Illinois, and Emralon 315, a Teflon

dispersion produced by the AchesonColloids Company,Port Huron,
Michigan.

The coated nylon bars were sterilized at 14_C for 36 hours

in a 40%potassium hydroxide solution. As shownin Figure 10 both

coating materials were stripped from the nylon during sterilization

and the surface of the nylon was spalled as if it had not been

coated. No further attempts were madeto coat nylon. Since the

coatings did not hold up, it was decided that it would not be

worthwhile to activate cells with the sterilization liquor.

3. NewCase Materials

Penton, Ce_con, fluorocarbons, and epoxy molding compounds

were examinedas possible candidates for case materials but only

the liquors from Penton and Celcon were tested for their effect on

cell performance.

a. Penton

Penton is a chlorinated polyether manufactured by the

Hercules Powder Co., Inc. An adequate quantity of Penton

molding pellets was sterilized in stainless steel cans at

11



14_C for 36 hours in a 40%potassium hydroxide solution.

Examination of the sterilized Penton pellets indicated there

was only a very slight surface attack in that the sterilized

sample lost its glossy sheen. No distinguishable odor was

detected and the liquor did not contain suspendedmaterial.

The maximumpressure reached during sterilization was 42

psig as shownin Table 1.

Three cells of standard construction were filled with 85

milliliters of the liquor from the sterilized Penton, formed

and cycled at the three-hour rate. The initial capacities of

the Penton cells averaged 24 to 25 ampere-hours as shownin

Fig. 4 and comparedfavorably to the controls. As shownin
Fig. 5 the discharge voltage of the cells was the sameas the

control. The cells failed near seventy cycles due to loss of
capacity. From the results of this test it is concluded that

Penton did not affect cell capacity or cycle life.

b. Celcon

Celcon is an acetal polymer manufactured by the Celanese

Chemical Company. It is a thermoplastic similar to duPont's

Delrin, but according to representatives of the two companies,
Celcon has better properties for the sterilization requirements.

An appropriate quantity of Celcon molding pellets was
sterilized in stainless steel cans at 14_C for 36 hours in a

40%potassium hydroxide solution. Visual examination of the

sterilized Celcon pellets did not reveal that it was attacked,

but the pellets had a yellow tinge. No distinguishable odor

was detected and there was only a very slight residue in the

liquor. The maximumpressure reached during sterilization was

40 psig, and the pressure dropped to zero at room temperature
as shownin Table I.

Three cells of standard construction were filled with 85

milliliters of Celcon liquor, formed and cycled at the three-

hour rate. Although they are not plotted, the disc_mrge
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voltages of the Celcon cells were the sameas shownfor

Penton and the control in Fig. 5. The initial capacities

were near 25 ampere-hours and the cycle life ranged from

about 80 to 110 cycles which compares very favorably to

the controls as shown in Fig. 3. From the data obtained

on this test, it is concluded that the liquor from Celcon

had no effect on the cells.

c. Fluorocarbons and Epoxies

The fluorocarbons were not investigated in detail be-

cause equipment was not available to attempt to mold cases

from them and it appeared that the new n_lon, Zytel 38,

would make a sufficient case because it was not appreci-

ably attacked and nylon degradation products did not affect

cell performance. It was also doubtful that parts as large

as the case could be molded from the fluorocarbons. Some

attempts were made to make cases from epoxy molding compounds,

but in order to do the job right expensive tooling and time

were needed. Epoxy case work was also dropped when it appear-

ed that nylon, Celcon or Penton would do the Job.

D. Sterilization at 135°C.

At the request of JPL, the separator materials which produced

poor cell performance after sterilization at 145°C. were evaluated

at 135°C.

I. Fibrous Sausage Casing

A quantity of fibrous sausage casing representative of three

cells worth was sterilized at 135%. for 36 hours in stainless

steel cans filled with 300 milliliters of a 40% solution of potas-

si_,, hydroxide. The samples did not appear to be as severely degraded
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as they were at 145°C and could be handled without falling apart.

Three cells of standard construction were filled with 85 milli-

liters of the liquor from the sterilized fibrous sausage casing,

formed and cycled at the three-hour rate. The initial capacities

on the cells ranged between 10 and 18 ampere-hours. Upon contin-

ued cycling the cells gained in capacity up to about 20 ampere-

hours and then receded to 10 ampere-hours between 12 and 17 cycles

as shown in Figure 11. The average discharge curve of the cells at

the nine ampere rate is shown in Figure 12. The improvement in

capacity and voltages of these cells in comparison to cells filled

with the liquor from fibrous sausage casing sterilized at 145°C is

indicative that we are working in a critical temperature range for

the degradation of fibrous sausage casing. It is recalled that

actual cells sterilized at 125°C gave good performance when dis-

charged at the three-hour rate (nine amperes) at room temperature(! )

The fact that a temperature near 125°C is quite critical in the de-

gradation of fibrous sausage casing was pointed out by Dr. L. M.

Cooke(2! Therefore, if incremental improvements in fibrous sausage

casing can be made by various chemical treatments as suggested by

Dr. Cooke, it should be worthy of further investigation.

2. Permion 600

A quantity of Permion 600 equal to the amount needed to build

three cells was sterilized in stainless steel cans in 300 milliliters

of a 40% solution of potassium hydroxide at 135°C for 36 hours. The

odor was the same as noted at 145°C, and the liquor was dark amber

in color. Pressure gauges were not used in this experiment. The

(I) Bogner, R. S., Report of an Evaluation of Delco-Remy Design of Sealed,

Secondary, Silver-Zinc Electrolytic Cells for Heat Sterilization,
J.P.L. Contract Nr. 950177, June 10, 1962

(2) Comments made by Dr. Cooke during the June 3, 1964 Conference held at

Delco-Remy Division, Anderson, Indiana
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sterilized Permion 600 was in somewhatbetter condition than that

sterilized at I%5°Cand was not as easily torn.

Three cells of standard construction were filled with 85

milliliters of the sterilization liquor, formed, and cycled at

the three-hour rate (nine amperesdischarge). The capacities of

the cells on the first few discharges ranged between I_ and 18

ampere-hours and built up to a little over 20 ampere-hours at ten

cycles as shownin Figure 11. There was practically no differ-

ence in capacity and cycle life between the cells filled with
liquors from Permion 600 sterilized at 1%5°Cand at 135°C° The

cells were removedfrom test around 30 cycles because of low

capacity. It was concluded that the Permion 600 would not be

an adequate separator material.

III. Seal Investigation

Two types of seals are necessary to produce a sealed cell. One involves

obtaining a seal between the case cover and the positive and negative plate

current carrying leads, commonly called the cell terminals. The other seal

problem is at the juncture of the cell case and the cover. The terminal-to-

cover seal on nylon was proven to be quite successful and was accomplished by

molding a metal insert in the cover at the time the cover was molded. The

plate leads were threaded through the metal inserts and sealed with pure tin

solder. Bonding the cover to the case had been effected by a chemical seal

with phenol which up to the time of this investigation was not considered to

be adequate. These two sealing problems were to be investigated for nylon

and other possible case materials.

A. Terminal-to-Cover Seal

The terminal-to-cover seal was initially evaluated by molding metal

pins in test cups of the material to be tested to simulate the terminal

insert in the cover and subjecting the cups to pressure and temperature.
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A fixture was built to hold the test cup so it could be subjected to

a pressure test. A disassembled and assembled view of the holding fix-

ture and test cup are shown in Fig. 13. The test cup was placed in the

threaded female ring and the threaded male plug was screwed down onto

the test cup. A high temperature rubber "O" ring was used to effect a

seal between the male plug and the flange of the test cup. The male

plug was fitted with a male Hansen quick disconnect fitting and a fe-

male Hansen quick disconnect fitting was attached to a manifold system

so failing samples could be quickly removed without disturbing the

other samples. Fig. 14 is a photograph of manifold with the assembled

test fixtures. The test cups were filled with about five milliliters

of a _O% solution of potassium hydroxide before attachment to the mani-

fold.

The assembled test apparatus was attached to an air line and pres-

sure regulatorp and the system was gradually subjected to a total pres-

sure of 90 psig at room temperature and left at this pressure for a

minimum of 15 hours. Leaks were detected by swabbing the outside area

around the pin with phenophthalein which turned red if a leak occurred.

If no leaks were detected at room temperature, the pressure in the

system was reduced to 60 or 65 psig and the apparatus was placed in an

oven at 145°C. for a minimum of 48 hours. Checks were made for leakage

at various time intervals.

I • Nylon

Ten Zytel 38 samples were tested as described above and all

samples survived the test. Five out of ten glass-filled Zytel 38

samples failed at room temperature at 90 psig, while five samples

survived both tests. The fact that the glass filler does not allow

the nylon to shrink as much as unfilled nylon was thought to be the

chief reason for failure and associated with the shrinkage factor

were the insert design and molding conditions. Figure 15 is an

illustration of the metal pin in a test cup compared to the actual

insert design in the cover. From the illustration, it can be seen

that the test cup should be more apt to leak than the actual
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terminal; therefore, it was decided to mold actual covers and

test them in a similar manner. Disassembled and assembled views

of the cover test fixture are shown in Figure 16.

Five covers molded of glass filled Zytel 38 were tested as

outlined above. Four of the covers leaked at 90 pslg at room

temperature and the one which did not leak at room temperature

leaked after two hours at 145°C. and 65 psig. No further tests

were made on glass filled nylon because of problems also en-

countered in the case-to-cover seal.

2. Penton

Ten test cups molded of Penton were evaluated as described

above. Five of the samples leaked at 90 psig at room temperature

and five of the samples survived the test. The five samples that

survived at room temperature were placed in the oven at 145°C.

under 65 psig pressure and all five of the samples leaked after

two to three hours. As described above, actual covers were tested.

Ten Penton covers were tested and three covers leaked at 90 psig at

room temperature. Six of the seven covers leaked when tested at

145°C. at 65 psig. One cover survived the test for 48 hours. From

these tests it was concluded that the present terminal-to-cover

seal for Penton was not reliable and no further testing was done.

3. Celcon

Five Celcon test cups were evaluated and none of the samples

leaked at 90 psig at room temperature. At 145°C. at 60 psig two

samples broke at the flange of the test cup within 24 hours, two

samples broke at the flange between 30 and 48 hours, and one sample

survived the test for 48 hours. Three Celcon covers were tested.

No leaks were detected at 90 psig at room temperature or at 145°C.

and 60 psig after 48 hours. Examination of the inside of the

covers revealed cracks about half way through the corner of the

covers. From these tests it appeared that the terminal-to-cover

seal on Celcon was adequate; however, the breakage of the cups and

covers indicated that at 145°C. Celcon was not as strong as nylon

or Penton.
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B. Cover-to-Case Seal

The case-to-cover seal was investigated on nylon, glass-filled

nylon, Penton, and Celcon. Four methods of sealing nylon were invest-

igated and the phenol zeal proved to be the best. The sealing of Penton
and Celcon was accomplished with heat (hot gas welding) since there was

no known chemical seal for these materials.

1. Penton

Penton cases and covers of the old case design as shown in

Figure 18 were heat sealed in the Process shop by means of a hot

gas welding technique. Two of the cases which appeared to have the

best seals were supported up to the seal Joint in metal cans (the

cases could not be placed all the way into the cans because of the

welding bead at the case-to-cover Joint) and subjected to a pres-

sure test at room temperature. One of the cases broke at 56 psig

at the weld joint and the other case also broke at the seal be-

tween 20 and 30 psig. From these results it was decided to wait

and test cases of the new design. Two heat sealed cases of the

new design were supported in metal cans and pressure tested at room

temperature. One of the cases leaked at the seal at 25 psig and

the other case leaked at the seal at 30 psig. The cases were re-

moved from the supporting metal cans to determine how much pres-

sure the cases would take before bursting. The side of one of the

cases broke at 30 psig and the other case leaked too rapidly to

build up a pressure over 25 psig. Since the case-to-cover seals

and the terminal-to-cover seals on Penton were not as good as the

nylon seals, and in view of the fact that nylon degradation pro-

ducts did not impair cell performance, no further experimental work

was done on Penton.

2. Celcon

Celcon cases and covers of the old design were molded with

the same tools as used for nylon and Penton. The cases and covers
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were heat sealed in the Process shop similar to the way Penton was

sealed since there is no known solvent seal for Celcon. Two cases

were delivered for testing. The cases were supported in metal cans

up to the seal joint and gradually subjected to air pressure up to

65 psig at room temperature. One case had a pin hole leak at the

weld and the other case did not leak. The case that leaked was re-

moved from the supporting metal can and gradually subjected to air

pressure. The side of the case blew out at 89 pslg. The other

case was placed in the oven at 14_C under 60 psig. The seal

cracked between seven and twenty-two hours after being placed in

the oven. It had been planned to test celcon cases of the new de-

sign, but because of time and manpower and the fact that nylon

appeared to be satisfactory, no further tests were made.

3• Nylon

The sealing of nylon was initially investigated by sealing

nylon test bars together by different methods. The test bars were

cut from molded cases and measured O.100 inch thick, 0.500 inch wide,

and were about three inches long. Twelve test samples of each of

the following three types of seals were made:

a. 88% aqueous phenol solution

b. A solution of 10 parts calcium chloride,

22.5 parts nylon, and 67.5 parts ethanol

c. Epoxy (Armstrong A-S I)

The strips were overlapped 0.5 inch to make a seal area of 0.25

squ_re inches. A pressure of about 10 psi was applied to the seal

area on the strips sealed with phenol and nylon-bodied calcium

chloride ethanol and the seals were cured for two hours at 13_F

and at room temperature for at least three days before testing.

The epoxy seals were cured at 13_F for two hours.

Six samples of each type of seal were sterilized in stainless

steel cans in a 40% potassium hydroxide solution for 36 hours at

145°C and six samples of each seal were used as controls. The
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seals were evaluated by clamping the ends of the test strips in

the Jaws of a tensile test machine and subjecting them to a ten-

sile pull along their longitudinal axis.

The results of the tensile tests on the nylon seals are re-

ported in Table 5. The data are somewhat scattered but indicate

that phenol produces the best seal before sterilization in that

the nylon test strips broke before the seal gave way. After

sterilization the epoxy seals were quite weak, whereas the nylon

strips broke before the bond gave way on the phenol and the nylon-

bodied calcium chlorlde-ethanol seals. These data indicated that

it should be possible to seal cells with phenol if pressure could

be applied to the seal area during the sealing operation. In

order to evaluate the seal further, covers were machined from

one-half inch thick Zytel 98 sheet stock to fit inside the present

case design after the top sealing lip was cut off of the case. A

disassembled and an assembled case and cover (prototype of the new

case design) used to evaluate case-to-cover seals are shown in

Fig. 17. The cover was drilled and tapped to accommodate a pres-

sure gauge or a fitting for attachment to a pressure line. The

prototype case and cover were used to evaluate all three of the

previously described seals and a heat seal.

The phenol seals and the nylon-bodied calcium chloride ethanol

seals were made by coating the mating surfaces with their respec-

tive sealant and inserting the block into the case. Pressure was

applied to the seal area with "C" clamps. The sealed cases were

placed in an oven at 1359. for two hours and then cured at room

temperature for a minimum of three days before testing. The epoxy

seals were made in a similar manner but pressure was not applied

to the seal area. The heat seals were made in the Process shop.

A hot inert gas (nitrogen) was used to fuse the two surfaces to-

gether. The three kinds of seals were also made on cases molded

of glass-filled Zy_el 38. The sealed cells were filled with approx-

imately 80 milliliters of a I0% potassium hydroxide solution and a
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pressure gauge was screwed into the top. The cases were supported

in stainless steel cans and placed in the oven at 145°C. for a min-

imum of 54 hours. Leaks were detected by observing the pressures

developed which were about 30 psig if no leaks were detected. If

the seals survived sterilization, the cases were checked at room

temperature up to a maximum of 90 psig after dumping the potassium

hydroxide. The results of these tests were as follows:

Phenol Seals

1. Seal OK after 96 hrs at 145°C - OK at R.T.** and 60 psi

2. Seal OK after 54 hrs at 145°C - OK at R.T. and 90 psi

3. Seal OK after 54 hrs at 1450C - OK at R.T. and 90 psi

4. Seal OK after 54 hrs at 145°C - OK at R.T. and 90 psi

5. *Seal OK after 54 hrs at 145°C - OK at R.T. and 90 psi

6. *Seal OK after 54 hrs at 145°C - Leak at R.T. and 54 psi

7. *Seal OK after 54 hrs at 145°C - Leak at R.T. and 30 psi

Epoxy Seals

1. Leak after one hour at 145°C

2. *Leak after two hours at 145°C

3. *Leak after one hour at 145°C

4. Leak after one hour at 145°C

5. Leak after one hour at 145°C

Nylon-Bodied CaCIs - Ethanol Seal

I. Leak after three hours at 145°C

2. Leak after three hours at 145°C

3. OK after 54 hours at 145°C - Leak at R.T. and 35 psi

4. Leak after one hour at 145°C

Heat Seals

1. Seal broke at 54 psi at R.T.

2. Leak between 2 - 5 hrs at 145°C

3. *Leak between 2 - 5 hrs at 145°C

* Cases molded of glass-filled Zytel 38

** Room Temperature
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From the results of these initial seal tests it was concluded that

phenol produced the best seal and that the glass filled cases did not

allow a good seal. It was also observed that the interior of the glass

filled cases were attacked by the electrolyte more readily than the un-

filled cases. The glass fibers left small bumpson the surface of the

cases which was probably the cause of the poor seal in comparison to

the unfilled cases. It was also questionable as to how well the glass

fibers were covered with nylon or if there was a wicking effect due to
fibers at the surface.

Oneof the phenol sealed cases was plugged and inverted on November

26, 1963 to determine how long the seal would hold up. At present no

leakage of electrolyte at the seal has been observed as of March 15, 1965.

Further tests were madeon the case-to-cover phenol seal to test

the seals unsupported during sterilization. Two glass-filled cases and

four unfilled cases were sealed with phenol as described above. One

glass-filled case and two unfilled cases were supported in metal cans

and the other cases were unsupported during sterilization at 145°C.

The unsupported glass-filled case developed a leak within four hours

and the supported case failed between six and twenty-one hours. Both

of the supported seals on the unfilled cases survived sterilization for

48 hours. Oneof the unsupported cases cracked along one of the

vertical edges of the case between six and twenty-one hours in the

oven. The pressure started to drop after two hours on the second un-

supported case, but after sterilization it was found that the leak

occurred at the pressure gauge instead of between the case and cover.

To determine if a snug fit and pressure were needed to makea good
seal, six cases were sealed taking little care to fit the nylon blocks

to the case. The cases were sealed as before but no pressure was

applied to the seal area. Three of the cases leaked at 30 psig at room

temperature and three of the cases held 90 psig supported in metal cans.

The three cases that held 90 psig were filled half full with a 40%

potassium hydroxide solution and placed in the oven at 145°C. for 48

hours. Oneof the cases leaked within two hours and the other two
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cells survived the test. From this test it was concluded that the

case-to-cover fit should be tight and that pressure must be applied
in making the seal.

IV. New Case and Cover Design

From the initial testing of the prototype of the proposed new 9ase

design, it appeared that the redesigned case molded of nylon, Zytel 38,

would survive sterilization. Also Penton and Celcon could be molded with

the same tools. The drawings for the new design were shown to J.P.L. repre-

sentatives at a meeting held at J.P.L. on October 22, 1963. Drawings of the

case and cover molds are shown in Figures 24 and 25. New case and cover molds

were ordered about the first of November of 1963 and were finally delivered

in January of 1964. Photographs of the new case and cover molds are sho_

in Figures 22 and 23.

The outside cell dimensions of the new case were about the same as the

old case. The wall thickness of the new case was increased from 0.10 to 0.125

inches for additional strength. The weight of the new case and cover was 13&

grams. The main feature of the new design was the cover-to-case fit or seal

area in that it had three advantages over the old design. One, it was con-

sidered more applicable for heat sealing the cover to the case if either Cel-

con or Penton was used as the case material. Two, pressure could be applied

to the seal area between the cover and case. Very little pressure could be

applied to the seal area on the old case design because the walls of the case

bowed in when pressure was applied to the seal area. The third advantage

was that there were no weak spots due to shoulders, ledges or sharp corners

such as there were in the old design. As shown in Fig. 18, the case wall

thickness was only one-half that of the body of the case and at the detent

or notch molded in the sides of the case to provide a snap fit of the case

and cover the case wall was only about 0.01 inch thick and was a source of

failure. During the previous investigation most of the leaks occurred at the

seal area due either to poor seals or cracks in the case at the seal area.

The new case and cover are shown in Figure 19. The terminal-to-cover seal

was not changed since past experience had proven it to be adequate.
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A. Testing of New Case and Covers

Cases and covers of the new design became available for testing

in January of 1964. The first covers did not fit snug in the case and

five cases were sealed for a preliminary check before attempting to

build cells.

The cases were sealed similar to the method described for the

prototype case and cover tests except instead of using "C" clamps to

apply pressure to the seal area, a special clamping fixture made in

the Process shop was used. The clamping fixture is shown in Figure 20.

One case was checked at room temperature unsupported. Air pressure

was gradually introduced into the case up to 90 psig, and after about 5

minutes at 90 psig the case blew up. The old design cases held about

50 psig. The other four cases were filled with about 80 milliliters

of a 40% potassium hydroxide solution and sterilized at 145°C. for 44

hours and only one case survived the test without leaking at the case-

to-cover seal. It was decided that the cover mold should be reworked

so the cover would fit tighter in the case.

No further seal tests were made on the new nylon case and cover

because of the time schedule. Actual cells were built when covers were

available from the reworked mold. Six cells were built using R.A.I.

separator materials and sterilized to start the cell testing phase of

the program. All six cells survived sterilization without leaking and

it appeared that the case and seal problem were solved. However, it

was soon discovered that the R.A.I. separator materials seriously

affected cell performance and cells were built to test other separator

materials. At this time it was found that several of the cases cracked

and leaked along the edges and some of the cases leaked at the seal

area. Further tests on the case and cover-to-case seal were then

initiated.

I. Initial Gas Pressure Tests at 145°C.

Six cases and covers of the new design were sealed with phenol

in the manner described previously except pressure was applied to

the seal area with a fixture made by the Process shop for the cell
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testing phase. Copper tubing was soldered to one of the termin-

als to accommodate attachment to an air pressure line. The other

terminal was soldered shut. The cases were supported in metal

cans and subjected to 90 psig at room temperature. No leaks were

detected when the cases were submerged in water.

Case No. I was placed in the oven at 145°C. supported in a

metal can at 60 psig but the copper tube broke lose from the

terminal. In an attempt to silver solder the copper tube to the

terminal, the terminal got too hot and melted the cover which

caused a leak at the terminal. The leak was not rapid and the un-

supported case held 90 psig after being in the oven over 36 hours.

Case No. 2 was aged 36 hours in the oven at 145°C. The un-

supported case was gradually subjected to air pressure and the

seal broke at 75 psig.

Case No. 3 was supported in a metal can under 60 psig air

pressure and placed in the oven at 145°C. for 40 hours and no leaks

or cracks were observed. The pressure was released and the case

was removed from the metal can. The unsupported case was sub-

Jected to 60 psig pressure and placed back in the oven for 16

hours. No leaks were observed so the pressure was increased to

90 psig. The cover-to-case seal broke between 57 to 72 hours at

90 psig.

Case No. 4 was tested similar to Case No. 3 but was removed

from the oven after 48 hours stand at 90 psig.

Case No. 5 was heat aged at 145°C. for 40 hou_s and then

gradually subjected to air pressure. The case-to-cover seal

broke at 65 psig. The case was not supported.

Case No. 6 was heat aged for 40 hours at 145°0. and gradu-

ally subjected to air pressure unsupported up to 90 psig. This

pressure was held for about five hours and the test was stopped.

. Mechanical Pressures Versus Gas Pressures

When pressure was applied to the unsupported cases at 145°C,
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the broad, flat sides bulged out to about double the original thick-

ness of the case as shown in Figure 21. From this test it was

assumed that gas pressures developed in the cells during steriliza-

tion were not entirely responsible for case breakage. To determine

if mechanical pressure produced by the swelling of the cell element

during sterilization was causing the cases to crack at the corners,

three cells were constructed using only nine plates instead of the

thirteen plates which reduced thickness of the element by approxi-

mately 0.20 inch. The three cells were supported in a metal can

and sterilized at 145°C for 48 hours. The center cell leaked at the

seal after about 24 hours but no leaks were observed on the outside

cells. Upon removal from the metal can, it was observed that the

two outside cells had cracks laterally on the broad sides of the

case between the cover and top of the element. Fine cracks were

also observed at the edges of one outside case and the center case.

The cell that leaked at the seal was bowed in slightly indicating

that there was a negative pressure in the cell; however, the other

two cells were not bowed in. The cells were weighed before and after

sterilization with the following results:

Cell Nr. Wt Before (grams) Wt After (grams) Wt Loss (grams)

9-3-15-I 515.3 514.0 1.3

9-3-15-2 515.5 475.8 36.7

9-3-15-3 508.8 507.7 1.1

This test was considered inconclusive and another experiment was run

in an effort to elucidate the cause of cell case cracking.

Nine cases were envolved in the second experiment, three con-

tained electrolyte only, three contained electrolyte and fibrous

sausage casing, and three were actual cells. The electrolyte in

each instance was a 45% potassium hydroxide solution. One of the

cells was of the new 13 plate design (discussed under Section IV, E.)

and two of the cells contained undersized elements in that they con-e

tained only nine plates of the 13-plate element design.
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Pressure gauges of the Bourdon tube type with a scale of

zero to 100 psi were mountedon the cells by means of a copper

tube which was soldered to one of the cell terminals. The copper

tubes were about 30 inches long which allowed the pressure gauges

to be mountedoutside of the oven. Heretofore cell gas pressures

had been measuredwith pressure gauges mounteddirectly on the

cell, and the gaugeswere subjected to the sterilization environ-

ment which probably affected the accuracy of the pressure read-

ing because of the thermal effect on the Bourdon tubes. The pres-
sures developed by the samplesduring sterilization at 145°C for

36 hours are presented in Table 6. The maximumpressures developed

by the three groups were: 15 pslg for potassium hydroxide, 23 psig

for potassium hydroxide and sausage casing, 27 pslg for complete

cells. The cases were supported in metal containers during

sterilization, three samples in one can and six samples in an-
other can.

Noneof the cases broke during sterilization, but one of the

cases containing electrolyte only leaked at the connection between

the copper tube and the terminal. The gas pressures developed

during sterilization certainly did not appear to be high enough to
produce case breakage, and since the 13-plate cell case did not

crack, it was questionable if mechanical pressures from the

elements were causing the cases to break.

The samples were weighed before and after sterilization,

and the cases containing electrolyte and sausage casing lost

approximately one gramwh_e the actual cells lest about six grams.
The difference in the weights is unexplainable unless there was an

undetected leak or an error was madein weighing.

Twelve cases were tested to determine if molding conditions

and annealing were important factors in case breakage. Six of

the test cases were injection molded in the Process Department's

four ounce machine, and six of the test cases were molded

in a twelve ounce production machine in Plant 11. It was

27



thought that the larger machine could push the material in the mold

faster than the small machineand possibly get better knitting of

the nylon as it flowed into the mold. Three cases from each machine

were annealed in Glyco wax $932, manufactured by Glyco Chemicals,

Williamsport, Pennsylvania, at 350°F for one-half hour and cooled

slowly in the annealing wax. To remove the wax the cases were

washed in boiling water and then in methylene chloride. All twelve

cases were sealed with phenol in the usual manner. The annealed

cases shrunk and the covers had to be forced into the case, since
the covers were not annealed.

The six annealed cases were placed in an oven and equilibrated

at 145°C in about one-half hour and pressure tested unsupported with

nitrogen. As recorded in Table 7 the case-to-cover seals let go on

all six cases between 95 and 115 psig. The seal failure might have

been due to the fact that most of the phenol was wiped off the seal

area when the covers were forced into the annealed cases. It was

also questionable whether or not all of the annealing wax was removed

from the case. Since the seals broke this test did not prove whether

annealing was beneficial or not.

The six unannealed cases were pressure tested at room temper-

ature. From the pressure data in Table 7 it can be seen that the

cases molded in the twelve ounce machine burst at 155, 202, and 200

psig. The seals let go on two of the four ounce cases at 200 and

130 psig and the case wall broke at 205 psig on the third case.

From this test it was concluded that the size of the molding

machine did not make any difference in the strength of the case.

It was pointed out that tests simulating the actual conditions

during sterilization were needed and further tests were made. Six-

teen cases molded in the twelve ounce machine were sealed in the

usual manner and a copper tube was silver soldered to one of the

terminals and the other terminal was plugged. Nitrogen was grad-

ually injected into five of the sealed cases at room temperature
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until they burst. The burst pressures were 250, 100, 80, 120, and

130 psig. The other four cases were heat aged in the oven at 145°C

for 36 hours and tested at roomtemperature. The burst pressures

on the heat aged cases were 50, 50, 40, and 50 psig. The effect
of heat aging the nylon cases is at least a 50%reduction in the

strength of the case at roomtemperature. All of the cases broke
in the samegeneral pattern. One side of the case blew out break-

ing at the wall corners and below the cover. This, of course,

indicates that the corners are the points of stress. However, the
burst pressures were still high enoughon the heat aged cases to

withstand the gas pressures developed in the cells during steril-

ization. The considerable spread in the burst pressures of the

cases tested at room temperature is not explainable.

Seven of the cases were pressure tested unsupported at I_5°C

after 36 hours at temperature. As shown in Table 7 the seals let

go on six of the cases between 50 and 80 psig and the case wall

broke at 170 psig on one of the cases.

In a further attempt to elucidate the case breakage problem,

tensile tests were made on Zytel 38 bars cut from molded cases and

tensile bars of other nylons, Teflon, Penton, Celcon and Polypro-

pylene. The tests were made on a Tinesis-Olsen tensile machine and

the strain was measured with an extensometer. Some of the tensile

bars were sterilized at 1/+5°C for 36 hours in a _0% potassium

hydroxide solution, but all tensile tests were made at room temp-

erature.

The tensile data on the various test strips are recorded in

Table 8. The data indicate that there is only about a 16% decrease

in the strength of the sterilized samples of Zytel 38, but, perhaps,

the most significant difference is in the strain data. The steril-

ized Zytel 38 samples became quite brittle and stretched only 5-10%

in comparison to about a 200% elongation in unsterilized samples.

Before any definite conclusions can be made, test data at elevated
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temperatures under various loads for various periods with KOH

present is needed. The present data indicate that the cases should

not be breaking due to gas pressure alone. There is a possibility

that mechanical pressures from the element might be bursting the

cases; this is doubtful. The effects of KOH and molding parameters

on the physical properties of case materials also need further

study.

V. Cell Testing

When it became evident from the cell component tests that the cross-

linked high density polyethylene with the acrylic and methacrylic acid grafts

were the best of the five separator experimental materials, 120 foot samples

of each material were ordered from Radiation Applications Inc. (R.A.I.) for

evaluation in cells.

Cells of standard plate construction, except for the omission of PVA

in the negative plate, using the R.A.I. separator materials were built and

sterilized. It soon became evident that the separator materials were emit-

ting a degradation product when sterilized in situ that decreased cell

capacity by about 50%. The cell testing program was modified in an attempt

to solve the problem. Finally the cell element was redesigned and it was

possible to get capacities of about 40 ampere-hours with fibrous sausage

casing separators. Testing of new element designs using standard FSC

separators was initiated. Modified FSC separators were also tested in situ.

A separator material (C19-300) which initially looked promising was pur-

chased from Yardney Electric Company and evaluated in cells. A detailed

description of the various test parameters and the findings is presented

in this section.

A. Sterilization and Evaluation of Cells Built With R.A.I. Separators

Table 9 lists the capacities, cycle and stand life data on the

various cells tested using R.A.I. separator materials, and the per-

tinent construction details are outlined in Table 11.

Initially thirty cells (fifteen each) were assembled from the two
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separator materials supplied by R.A.I. The separators were acrylic

acid graft on crosslinked high density polyethylene and methacrylic

acid graft on crosslinked high density polyethylene; AA-XLHDFEand

MAA-XLHDPEor just AA and MAAare used to designate these materials in

cells. Six cells, three each of CI, 2, 3 AA and CI, 2, 3 MAA, were
selected at randomand used for control cells. The cells were formed

at 1.25 amperesto 2.1 volts and discharged at nine amperes to 1.30

volts. Their initial capacities were 23 to 25 ampere-hours as shownin

Table 9, and it was decided to sterilize three cells built with each

type of separator. The cells were supported three in a group in metal
cans and sterilized at 145°C. for 36 hours. After sterilization the

cells were examined for leaks and none were detected indicating that

the new case design and seal solved the breakage and seal problems.

The cells were placed on formation charge at 1.25 amperes overnight

with an integrator in the circuit. The following morning it was dis-

covered that five cells had exploded during the night. From the inte-

grator reading, it was calculated that the cells had only received 18

ampere-hours charge. Onecell was still sealed and another cell was

broken near the top so performance checks were madeon these two cells.

The cases of the other four ce_Is were split and broken on the sides,

and three of the five broken cells had their tops blown off, breaking
the lug wires from the plates.

The one remaining sealed cell was placed back on charge and it

accepted only about three ampere-hours before the counter E_ reached

2.1 volts and pressure started to build up in the cell as noted by the

bulging cell case. On the first discharge the sealed cell (AA 2) con-

taining the acrylic acid graft on crosslinked high density polyethylene
separator yielded 17 ampere-hours, whereas the broken cell (MAA3) con-

taining the methacrylic acid graft on crosslinked high density poly-

ethylene yielded 11.2 ampere-hours. The cells were recharged at 1.25

amperes to 2.1 volts, and cells AA 2 and MAA3 accepted 18 and 14 ampere-
hours respectively. A hole was drilled in the top of the sealed AA cell

and the positive and negative plate voltages were read using a strip of

zinc metal as a reference electrode. The reference electrode readings
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indicated that the positive plates were polarizing in both cells

during charge. Twenty milliliters of 45%potassium hydroxide were

added to both cells, but this did not have any effect on cell charge

acceptance. The cells were given several cycles but no improvement
in cell capacity was accomplished as can be noted in Table 9. From

the third electrode measurementsand the cell behavior on charge, it

was believed that the cells exploded because of oxygen gas pressure
rather than a chemical explosion.

I. Sterilization at 135°

After the poor performance of cells sterilized at 145°C.,
it was decided to sterilize cells at 135°C. to get an indication

of how critical the sterilization temperature might be. Six cells,

three each with each type of separator material (AA 4, 5, 6 and
MAA7, 8, 9), were sterilized at 135°C. for 36 hours in sets of

three supported in metal cans. The cells survived sterilization

with no apparent leaks. The cells were formed at one ampereto

an end of charge voltage of 2.1 volts and discharged at nine

amperes to I .3 volts. The initial capacities of the cells were

about 13 ampere-hours as shownin Table 9. The cells were cycled

a few times and on the third and fourth cycles, the cells were

yielding from 16.5 to 20 ampere-hours. Although there was some
improvement in the cells sterilized at 135°C., it was not con-

sidered significant enoughfor further consideration; however,
cycle and stand life data were obtained on the cells and are

summarized in Table 9. The AA cells yielded very good capacities

after 30 days stand, but began to show signs _of shorting in 90

days. Cell AA 4 stood about 6.5 months before shorting.

2. Presterilization of R.A.I. Membranesand Special Testing

After the disastrous results obtained on the sterilized cells

constructed with the two types of crosslinked high density poly-
ethylene base separators, it was thought that a presterilization
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of the separator material might leach the degradeable deleterious

material from the separator. In the cell componenttests, cells

constructed with the sterilized separator gave good capacities.

At the sametime it was decided to evaluate Permion 300, Permion
600, and the sterilization liquors from the sterilized separator

materials. It was also planned to determine if the addition of

palladium in the positive plate would increase cell performance.

The possibility that the Viscon paper wrap on the negative plates

was causing poor cell capacity was also checked.

a. Crosslinked High Density Polyethylene

The remaining cells which were built for cell testing

were torn downto removethe separator material since it
would take at least another month to reorder additional

material. Enoughof each type of material to build five
cells was sterilized at 145°C. for 36 hours in stainless

steel cans in about 200 milliliters of a 40%solution of

potassium hydroxide. The sterilization liquor was used to
fill two cells of standard construction to determine if the

degradation products affected cell performance. The steril-

ization liquor contained a slight quantity of a white sus-

pension. It was also noted that when the material was washed

a white colored material could be rubbed off the membranewith

one's fingers and formed a milky suspension in the water. No

attempt was madeto rub this product off all of the sterilized

membranes. After washing the membranesfree of the electrolyte,

they were hung up to air dry at room temperature. A sample of

the precipitate was retained for infrared analysis, but the

material could not be identified by the analyst.

Six cells, AA 1, 2, 3 P and MAA1, 2, 3 P, were built

from each of the presterilized membraneswith the following
modifications:

(S) Negative plates were built with the sterilized

membranesin place of the Viscon paper and contained
4%mercuric oxide instead of 1%.
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(2) The positive plates were madefrom a I% palladium

alloy silver powder.
(3) The electrolyte wasa 50%solution of potassium

hydroxide.

The cells were sterilized at 145°C. for 36 hours and no leaks

were detected. The cells were formed at one ampereto 2.1 volts

per cell and discharged at nine amperes. The initial capacities

were about 12 ampere-hours as shownin Table 9 and increased on

the second and third cycles. Cells containing AA-XLHDPEpre-

sterilized separators yielded 28-30 ampere-hours on the third

cycle whereas the cells with the presterilized MAA-XLHDPE

delivered 20 to 23 ampere-hours. The cells survived a ten-day

stand test on the fourth cycle and were placed on a 30-day stand

on the fifth cycle and four of the cells shorted in from two to

22 days. An attempt wasmadeto charge the shorted cells hut they

could not be fully charged. Two of the AA cells delivered 27 to

29 ampere-hours after the 30-day stand and were recharged and put

back on a second 30-day stand. One of the cells shorted in seven

days and the other cell delivered 27 ampere-hours and was put back

on stand but shorted within a month.

To determine if the palladium or the removal of the Viscon

paper was instrumental in improving cell performance, two addi-

tional cells were assembled without Viscon paper on the negative

plate and palladium was not used in positive plates. Cell NSNV

was built with non-sterilized separator material, and cell PSNV

was assembled with presterilized separators. Both cells were

sterilized at 145°C. for 36 hours. They were given several cycles

and 10 and 30-day stand tests as shown in Table 9. The capacities

ranged between 10 and 13 ampere-hours and the cell with the pre-

sterilized material had just a slightly better capacity. The

PSNV cell was overcharged on the eighth cycle and its top was

blown off, presumably due to gas pressure. Cell NSNV showed no

capacity loss after two 30-day stands. The cell was placed on
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stand on May 28, 1964 and on January 22, 1965 the cell was

reading 1.68 volts, indicating it was self-discharging.

Another cell, XLHDPE 040P, was constructed later when it

was found that the positive plates were being affected by the de-

gradation products. The cell contained about double the usual

amount of positive active material. Four layers of presterilized

crosslinked high density polyethylene were used for the separator.

The presterilized material was also used for the negative plate

retainer in place of Viscon paper as shown in Table 11. After

sterilization at 145°C. the cell delivered 22.2, 33.3, 34.5 a.h.

on three successive cycles which is about double the capacity on

cells PSNV and NSNV. As will be discussed later in section D,

the fact that capacity is increased by increasing the quantity of

positive material while reducing the quantity of negative material

in a cell is proof that the degradation products are attacking the

positive plates. The nature of the degradation products and how

they attack the positive plate are unknown.

Cell XLHDPE 040P had fair capacities after 10 and 30-day

stands on the fourth and fifth cycles, but the cell shorted on

the sixth charge cycle.

From the results of the tests on the cells described above,

it is concluded that the Viscon paper was not responsible for

poor cell capacities and that presterilization did not eliminate

the degradation product. Palladium in the positive plates appeared

to nullify the effects of the separator degradation products on

cell capacity, but the separator problem was not solved as

evidenced by the poor stand lives obtained on the cells.

b. Cells Activated with Sterilization Liquor

Four cells of standard construction (AA 1 and 2 and MAA 1 and

2) were filled with 85 milliliters of the liquor from each of the

two types of sterilized membranes (AA on XLHDPE and MAA on XLHDPE)

formed and cycled in the usual manner. The initial capacities were
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low, ranging from six to 20 ampere-hours. The capacities of the

low capacity cells gradually increased to about 20 ampere-hours

on the sixth cycle as shown in Table 10. The cells were given

33 cycles with no significant change in capacity, and the test

was stopped. This test demonstrated that a soluble degradation

product is produced which is partially responsible for the re-

duction in cell capacity.

c. Testing of Permion 300 and Permion 600

Permion 300 is a polyethylene base separator material with

an acrylic acid graft manufactured by R.A.I. Since this material

was similar to the experimental membranes, it was tested to deter-

mine if it behaved in a similar manner. Enough Permion 300 to

build three cells was sterilized in 200 milliliters of a 40%

potassium hydroxide solution in a stainless steel can. The

sterilized P-300 was washed in deionized water. A white suspen-

sion like that obtained from the experimental membranes was noted

in the wash water but to a greater extent. The material was

severely degraded and only enough material to build one cell was

salvaged. The cell (PS P-S00) was built with 1% palladium in the

positive plates and sterilized at 145°C. for 36 hours. As shown

in Table 9 the capacity increased from 14.4 to 25.5 ampere-hours

in three cycles but the cell shorted on the fourth charge cycle.

Two cells of standard construction were filled with 85 milli-

liters of the sterilization liquor and cycled. The initial

capacities of the cells, P-300 L-1 and L-2, averaged about nine

ampere-hours and gradually increased to a maximum of 20 ampere-

hours on the sixth cycle as shown in Table 10. It is concluded

that Permion 300 is not stable in the sterilization environment

and is not a satisfactory separator material.

Two cells, P-600 .040P and PF-P600, were assembled using

Permion 600 as a separator. Permion 600 is a cellophane base

material with a copolymer graft of styrene and acrylonitrile
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produced by R.A.I. Cell P-600 .040P shorted on the first charge
after sterilization at 145°C. Cell PF-P600was formed and dis-

charged to zero volts prior to sterilization. This cell also

shorted on the first charge cycle after sterilization.

d. Re-evaluation of Teflon

After the disastrous results with the polyethylene base

separator materials, it wasdecided to evaluate the behavior of

the Teflon separator when sterilized in situ. Cell, Teflon AA,

was built using a sample Teflon separator with an acrylic acid
graft and sterilized at 145°C. for 36 hours. As shownin Table

11, the cell contained I% palladium positive plates and Viscon

was not used on the negative plate. The cell was formed and

cycled in the usual manner. The capacity was low, ranging from
about 13 to 18 ampere-hours through nine cycles indicating that

the Teflon membranealso emitted a degradation product. The cell

shorted during the tenth charge cycle substantiating the previous

findings that teflon base separators do not exhibit good life
characteristics.

e. Effects of Acrylic Acid in the Electrolyte

In an effort to get someidea of the nature of the degrada-

tion product from the separators, it was decided to test two cells

of standard construction with acrylic acid added to the electro-
lyte. Onecell was filled with 85 milliliters of 45%potassium

hydroxide which contained I% by volume acrylic acid. The second

cell was filled with electrolyte which contained 2%by volume

acrylic acid. The cells were formed and cycled in the usual

manner, and on the first two cycles the cells, I% AAand 2%AA,
yielded 20 to 23 ampere-hours as shownin Table 9. On the fourth

and fifth cycles the cells yielded 26 and 28 ampere-hours. From

these results, it is concluded that acrylic acid monomerin the

range tested does not reduce cell capacity.
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B. Sterilization of Yardney Element

A Yardney LR-40 Silvercel was purchased for evaluation. According to

the Yardney data sheet, the cell had been previously formed and discharged.
The cell case was molded of styrene and would melt at 145°C. so the elec-

trochemical element was removedfrom the styrene case and inserted into a

Delco-Remynylon case.

The cell was sterilized at 145°C. for 36 hours, supported in a metal

can. During sterilization the cell leaked at the case-to-cover seal area.

It was surmized that the leak was probably due to an inadequate job of

cleaning the seal area after inserting the wet element in the case.

Deionized water was added to the cell to bring the electrolyte level back

up to the top of the plates. On the first discharge the cell yielded 14.7

ampere-hours; however, the cell had not been fully charged. On the second

discharge the cell yielded 35.6 ampere-hours and subsequently on six addi-

tional _I^_ _u_yi _I_ _ _n.___ ampere-hours. On the eighth cycle after

a ten-day stand, the cell yielded 34.6 ampere-hours. The cell shorted

during charge on the ninth cycle as shownin Table 10. The initial results

on this cell were very encouraging, and it was thought that the Yardney

separator material was worthy of further evaluation; therefore, 100 square

feet of the Yardney separator material, C19-300, was purchased for further

testing in Delco-Remycells. The construction and testing of the cells

built with the C19-300 material are discussed in section V, E.

C. Treated Fibrous SausageCasing Separators

Two samples of specially treated fibrous sausage casing were used for

separators to build two cells of otherwise standard construction. There

was only enoughmaterial for two layers of separation between the plates.

The samples were prepared by the Visking Division of Union Carbide Corp.

by soaking their fibrous casing in a silver acetate solution for 24 hours.

Sample 13-3 Ag-B was washed free from non-bound silver ions while sample

B-3 Ag-F was not washed and contained both bound and free silver ions.

The cells were sterilized at 145°C. for 36 hours supported in metal
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cans and charged at 1.25 amperesto 2.1 volts. The cell containing the
B-3 Ag-F sample shorted during the formation charge. The cell constructed

with the B-3 Ag-B yielded 16.5 ampere-hours on the first two cycles and

gradually built up to a little over 20 ampere-hours. The cell was given

a lO-day stand on the fourteenth cycle and yielded only 3.% ampere-hourso

Cycling was continued and the cell shorted on the eighteenth cycle. The

cycle data up to the S2th cycle are shownin Table 10.

Although the capacity of the ceSl was low, it demonstrated improve-

ment over past results with untreated fibrous casing where it was only pos-

sible to obtain four to nine ampere-hours from cells of the samedesign;

therefore, it seemsadvisable that this type of separator material be re-

evaluated in cells of the newdesign as discussed in the following sec-

tions. Adequate initial capacities could probably be attained, but
charged stand life is questionable.

D. Change in Plate Material Ratio

As previously discussed It was noted that the degradation products

produced during sterilization were apparently affecting the positive plates

and preventing them from accepting full charge and/or preventing them from

discharging as indicated by third electrode reading. Therefore, it was

surmised that it might be possible to increase the quantity of positive

plate material and increase the capacity of the cell even in the presence

of the degradation products. To determine if this hypothesis was true,

three cells were constructed with three different separator materials.

The weight or quantity of silver in the positive plates was doubled

so that the six positive plates contained approximately 163 grams of

silver. In order to accommodate the thick positive plates in the case,

the seven negative plates were cut down from 20 to I% grams of zinc oxide

per plate. The negative plates then limited cell capacity to 65 ampere-

hours on a theoretical basis of 100% Faradaic efficiency. One cell, FSC

.0%OP, was built with two layers of standard fibrous sausage casing.
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The second cell, XLHDPE.040P, contained four layers of presterilized

crosslinked high density polyethylene, and the third cell, P-600 .040P,
contained three layers of Permion 600 separator material.

The cells were sterilized at 145°C. for 36 hours and tested in the

usual manner. The cell containing the Permlon 600 shorted during the

formation charge. The P-600 cell was torn downand it appeared as if the

separator might have been torn during assembly, so a second cell was

assembled and sterilized. The second P-600 cell also shorted during the

formation charge. The cell containing fibrous sausage casing yielded 43.5

and 42.5 amperes on two successive cycles and was placed on stand, but it

shorted in four days. The cell containing the XLHDPEseparator yielded
22.2, 33.3, 34.5 and 29.7 Eunpere-hourson successive cycles as shownin

Table 10. After a 30-day stand on the fifth cycle, the cell yielded 28.9

ampere-hours; however, the cell shorted on the next charge cycle. The re-
sults obtained from this test indicated LhaL it w_ feasible to increas_

cell capacity even in the presence of capacity limiting degradation pro-

ducts by increasing the quantity of positive plate material. This test

was also further proof that the separator degradation products primarily

affect the positive plate.

Preformation Charge and Discharge and Modified Element Design

From the results on the Yardney cell, it was theorized that a

formation charge and discharge before sterilization might improve

cell capacity. Three cells were built using three types of separator

material: fibrous sausage casing, Permion 600, and cellophane. A

modification was also made in the element designs. One cell, PF-FSC,

contained two layers of FSC and had six 23 gram positive plates and

seven 16 gram negative plates. The other two cells contained 15

plates (seven 23 gram positives and eight 16 gram negatives). One

cell, ?F P-600, contained three layers of Permion 600 and the other

cell, PF-Cello, contained three layers of cellophane. The cells were

formed at 1.5 amperes and discharged at nine amperes to 1.3 volts and

yielded 50, 59, and 61.5 ampere-hours for the PF-FSC, PF-Cello, and

4O



PF-P600, respectively. The cells were discharged to zero volts by

shorting the terminals and sterilized at 145°C. for 36 hours. The

cell cases cracked at the edges near the top during sterilization

so deionized water was added to the cells to bring the electrolyte

level to its original position. During charge the two cells built

with the P-600 and cellophane separators shorted; however, the PF-FSC

cell accepted charge and yielded 44 ampere-hours on the first dis-

charge and 48 ampere-hours on the second discharge (see Fig. 27)

after sterilization. It yielded 46.5 ampere-hours on the fourth

cycle after a ten-day stand. The cell was given three more cycles

and put on a stand test and the cell shorted after 32 days as shown

in Table 10. This test indicated that a significant increase in cell

capacity can be obtained by a formation charge and discharge before

sterilization; however, there is the added problem in this procedure

of discharging all of the formed plate materials because they produce

eYe_s_iv_ pressures during sterilization which burst the case.

E. Redesign of Electrochemical Element

In discussing the sterilization problem with JPL representatives dur-

ing the program, it was stated that the battery requirement was primarily

for stand life rather than cycle life. The load requirements were not

known but it was estimated that it would probably be a low rate intermittent

discharge, possibly over about a ten-day period. In view of this information

and the results of tests discussed in section D, a change was made in the

element design. In all of the previous investigations, testing was done with

cells designed primarily for cycle life in which the positive-to-negative

plate material ratio was I :2. The nmminal capacity rating of the cells

was 25 ampere-hours. The 1:2 material ratio was calculated on a 100% Far-

adaic efficiency of the starting plate materials, silver powder and zinc

oxide. The primary reason for doubling the quantity of zinc oxide in rela-

tion to silver is because of the "washing" effect of the zinc plate on

cycling which is due to the solubility of zinc oxide in the electrolyte.

Upon cycling, incremental quantities of zinc lose contact with the bulk of
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the plate and also shift position on the plate, consequently the plates

gradually decrease in capacity.

Since it wasmadeknown that cycle llfe was not an important factor

in the sterillzable battery, the element design was changed so the posi-

tive-to-negative plate material ratios were 1:1 calculated on a 100%

Faradaic efficiency. In making the change in material ratio, it was con-
servatively estimated that cell capacity could be increased from 25 to

approximately 40 ampere-hours. The gross weight of the cell remained

approximately the samenear I .3 pounds. The type of separator system and

the number of layers will have someeffect on the element design, pri-

marily because of the volume they occupy. The number of plates per unit

volume is a factor to consider in element design because as the number of

plates decrease, there is a subsequent decrease in the volume occupied by

the separator system, consequently the extra volume can be utilized by add-

ing more active mat_r_]. Since degradation products from all of the sep-

arator materials tested thus far limited cell capacity, it was thought that

it would be advantageous to increase the plate material to separator mater-

ial ratios by decreasing the numberof plates per cell.

1. Testing of Yardney C19-300 Separator Material

The C19-300 separator material purchased from the Yardney Electric

Corporation was used to build twelve cells with three different element

designs as shownin Table 11. All of the cells contained seven layers

of the separator material between the positive and negative plates.

The dry material measured slightly over one mil. in thickness per layer.

Two cells, SYS13and CYS13,were of the standard 13-plate design for a

direct comparison with previous cell tests. Cell SYS13was sterilized
at 145°C. for 36 hours, and cell, CYSS3,was used for a control. The

sterilized cell yielded 11.0 ampere-hours on the first discharge and

shorted on the second charge cycle. The control cell yielded 22, 29,

35, and 34.5 ampere-hours on successive cycles. The cell was cycled

to failure, and it shorted on the 40th charge.

Ten cells contained revised element designs wherein the plate
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materials were in a 1:1 ratio. Four of the cells contained nine plates
and had a theoretical capacity of 81 ampere-hours. Six of the cells

contained 13 plates and had a theoretical capacity of 68 ampere-hours.

Twoof the thirteen plate cells, PF-13YIS and PF-13Y2S, listed in
Table 10 were formed and discharged to zero volts before sterilization

and yielded 43 ampere-hours. The cells were inadvertently left in the
oven at 145°C. for 44 hours instead of 36 hours. The cell cases cracked

at the corners during sterilization and electrolyte was added to the

cells before they were charged. The cells yielded about 30 ampere-hours

on the first two cycles after sterilization; however, they shorted on
the third charge cycle after sterilization.

Two of the 9-plate and two of the 13-plate cells (9YIC, 2C and

13YIC, 2C) were controls, and the other four cells were sterilized at

145°C. for 36 hours. All of the sterilized cells leaked during steril-

bring the electrolyte level to its original position. The cells were

charged at 1.5 to 2.0 amperes to 2.1 volts and discharged at 9 amperes

to 1.3 volts at room temperature. The 13-plate and 9-plate control cells

had about equal capacities being in the range of 50 to 55 ampere-hours

as shown in Table 10. The 9-plate sterilized cells had somewhat better

capacities than the 1S-plate cells indicating that capacity can be in-

creased by increasing the plate-to-separator material ratio. Typical

discharge curves for the cells are shown in Figures 26 and 27. On the

fourth cycle the cells were given a IO-day stand. The four control

cells yielded about 48 ampere-hours, whereas the 9-plate sterilized

cells yielded 42 ampere-hours, and the 13-platesterilized cells had

quite a spread, yielding 39and 25 ampere-hours. The cells were re-

charged and put on stand on May 20, 1964. None of the cells had

shorted up to January 22, 1965 when they were transferred to Crane

Naval Depot. Data are insufficient at this time to conclude whether

or not the C19-300 separator is better than FSC. The results indicate

that a degradation product is formed which reduces cell capacity.
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Stand life is questionable, but thus far C19-300 has shown stand llfe

superior to RAI materials.

2. Thirteen Plate Cells Containing Fibrous SausageCasing Separators

After the encouraging results obtained on FSC, 04OPand Pf-FSC

cells with fibrous sausage casing separators, three additional cells

were built to re-evaluate FSCseparators in the new element design.

The cells contained 13 plates with a 1:1 negative-to-positive plate

material ratio with three layers of Food Product's standard FSCfor

separators. The cells were formed in the usual manner and discharged

as a battery at 15 amperes to 3.9 volts and yielded 49 ampere-hours.

The cells were discharged to zero volts by shorting the terminals and
sealed.

The three cells (FSCPF I, 2, 3) were supported in a metal can
and sterilized at 145°C.. but the_ were inadvertently left in the

oven for 44 hours. During sterilization the cases cracked at the

corners and someelectrolyte was lost. From 15 to 25 milliliters

of electrolyte were added to the cells to bring them to the original
level. The cells were given several cycles, discharging at 10 amperes

to 1.3 volts and charging at 2.0 amperes to 2.1 volts, and placed on a

10 day stand on the seventh cycle. As shownin Table 10, the capaci-
ties of the cells were around 44 ampere-hours which comparesfavor-

ably with the results obtained on the previous cell and the cells con-

structed with C19-300. The discharge curve for the 13 plate cells is

shown in Fig. 28 in comparison with the discharge curves for the 9

plate cells which are discussed on page 46. The cells gave good

capacities after a 10 day stand on the seventh cycle. They were

placed on stand on June 6, 1964, and one cell shorted on the seven-

teenth day. The second cell shorted after 5.5 months. The third cell

was transferred to Crane Naval Depot on January 22, 1965 with a volt-

age reading of 1.56 volts, indicating that it was self-discharging.

An attempt was made to recharge the shorted cells, but they would

not hold the charge.
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3. Addition of Aluminum Oxide to the Electrolyte

Three 13 plate cells with a 1:1 positive-to-negative plate

material ratio and three layers of standard fibrous sausage casing

as separators were filled with 75 milliliters of 45% potassium

hydroxide solution which contained approximately 6% aluminum oxide

by weight. The cells (6% AL 1, 2, 3) were supported in a metal can

and sterilized at 145°C. for 36 hours. No leaks at the seals or in

the cases were observed. The cells were charged and discharged in

the usual manner and the capacities of the cells over seven cycles

ranged from 22 to 30 ampere-hours as shown in Table 10. The cells

were put on a 10-day stand on the sixth cycle and showed no appreci-

able loss in capacity. The cells were placed on a 30-day stand on

the eighth cycle and lost only about three ampere-hours capacity. The

capacities of these cells might be compared to the preformed cells

which indicates that a formation charge and discharge before sterili-

zation is beneficial to cell capacity. The ceils were put back on

stand on June 23, 1964. One cell shorted after five months, and the

other two cells shorted after about seven months as indicated in

Table 10. All three of the cells exploded soon after shorting.

From this test it is concluded that the addition of aluminum is

not beneficial to cell performance.

4. High Molecular Weight Fibrous Sausage Casing

Six cells (HMW-IPF, 2PF, 3PF, 4, 5, 6) were constructed with three

layers of a specially prepared high molecular weight fibrous sausage

casing by Food Products Division. The cells were of the new design with

13 plates and a 1:1 positive-to-negative plate material ratio as outlined

in Table 11. The cells were filled with 75 milliliters of 45% potassium

hydroxide and their average weight was 591.2 grams. Three of the cells,

HMW-IPF, 2PF, 3PF, were formed and discharged before sterilization. The

preformed cells were discharged at 15 amperes as a battery to 3.9 volts

and yielded 48.8 ampere-hours. The three preformed cells were then dis-

charged to zero volts by shorting the cell terminals and sealed.
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All six cells were supported in a metal case and sterilized at

145°C. for 36 hours. All six cells developed leaks during steriliza-

tion. Three of the cells leaked at the seals and the cases cracked

at a corner on four of the cells. The electrolyte level was adjusted

to its original position and the cells were cycled three times charg-
ing to 2.0 amperesto 2.1 volts and discharging at nine amperesto

1.3 volts. As shown in Table 10 the preformed cells yielded better

capacities. There was no appreciable loss in capacity after 10 and

30 day stands and the cells were put on extended stand on August 5,

1964. Twocells, HMW-IPFand PSi-6, shorted on charge and cell

HMW-3PFshorted overnight. The three remaining cells (HMW-2PF,HMW-4,
HMW-5)still had an open circuit reading of I .84 volts when they were

transferred to Crane Naval Depot on January 22, 1965 after 5.5 months
stand.

From this test it is concluded that the high molecular weight

fibrous sausage casing is not superior to the standard fibrous sausage
ca_ing.

5. Nine Plate Cells with FSCSeparators

Three nine plate cells, 9PF I, 2, 3, were constructed with three

layers of Food Products' standard fibrous sausage casing for compari-

son with the 13 plate cells. The positive-to-negative plate material

ratio was 1:1 and the cells had a theoretical capacity of 80 ampere-

hours. The cells were formed at 1.50 amperes and discharged as a bat-

tery at 15 amperes to 3.9 volts giving 48.8 ampere-hours. The cells

were discharged to zero volts by shorting the cell terminals, sealed,

placed in a metal can, and sterilized at 145°C. for 36 hours. One of

the cells was observed to leak at the case-to-cover seal; however, they

could not be removed from the metal can and it was not possible to

determine if the cases cracked or how much electrolyte might have been

lost. No electrolyte was added to any of the cells and they were

charged at 1.5 to 2.0 amperes to 2.10 volts and discharged at 9

amperes to 1.3 volts. As shown in Table 10, the cells gave excellent

capacities on the second and third cycles indicating that not much

electrolyte could have been lost.
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On the fourth cycle after sterilization, the cells yielded 51.5

ampere-houra after a lO-day stand. The cells were charged and put

on stand on July 30, 1964. When the cells were transferred to Crane

Naval Depot on January 22, 1963, their o.c. voltages were still at

the divalent silver oxide level.

This test tends to prove that cell performance can be improved

by decreasing the separator-to-plate material ratio by decreasing the

number of plates in the cell. A typical discharge curve of the 9-

plate cells is compared to a discharge curve of the 13-plate cells in

Fig. 28.

F. Sterilization of Primary Dry Charged Cells

At the request of JPL some preliminary experiments were made on "dry

charged" primary cells. Eighteen primary cells similar to those used in

the primary battery for the Minuteman Missile manufactured by Delco-Remy

were assembled. Six cells were used for controls. Six unsealed cells were

sterilized dry at 135°C. for 36 hours and six unsealed cells were sterilized

dry at 1450C. for 36 hours. After sterilization the cells were filled with

40% potassium hydroxide and immediately discharged at 10 amperes to an out-

point of 1.30 volts. The average capacities of the three groups of cells

were: controls, 11.1 ampere-hours; 135°C., 7.1 ampere-hours; 145°C., 6.2

ampere-hours. This represents from 36 to 44% loss in capacity of the cells.

The capacities of the cells are recorded in Table 12.

The open circuit voltages of the sterilized cells were 1.61 to 1.62

volts whereas the voltages of the controls were 1.85 to 1.86 volts. The

difference in the open circuit voltage indicates that the reason for loss

in capacity of the sterilized cells was due to the decomposition of the

divalent silver oxide to monovalent silver oxide during sterilization

according to the equation:

2 AgO A Ag20 + _ 02 t

Se Plate Thickness Evaluation

Twelve cells were constructed to determine cell performance as a
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function of plate thickness. Four groups of three cells each were built

to evaluate four plate thicknesses keeping the positive-to-negative plate

material ratios approximately 1:1. The negative plates contained I% mer-

curic oxide and were wrapped with one layer of Viscon paper. The cells

contained three layers of standard fibrous sausage casing separators with

a "u" wrap around the positive plates, leaving the negative plates open.
Other construction features are listed in Table 13. The theoretical

capacities of the cells are based on the weights of silver in the posi-

tive plates ar_ as stated in the 3 September196%Status Report, they were

recalculated from weights obtained after tearing the cells downafter they

failed because it was suspected that an error had been madein the weights
during manufacture.

Table I% lists the charge and discharge variables by cycle for the

cells. The cells were charged and discharged in series, and as noted in

the table when a cell reached 2.1 volts, it was removedfrom the charge

together so the circuit was momentarily broken when a cell was removed.

A Model 1473 Weston integrator was placed in the circuit so an accurate

measure of the capacity input and output of the cells could be made.

The charge procedure was varied somewhatthrough the first five

charge cycles to determine its effect on cell capacity. Table 15 lists the

average capacity input and output of each three cell group over the first

seventeen cycles. The twelfth cycle was omitted because the out point was

missed on several of the cells. On the fifth cycle the cells were charged

at an ambient temperature of IooOF., and although the cells accepted an

average of about 10%more charge, the discharge capacity remained about
the same.

Figure 29 showsthe charge and material efficiencies averaged over

the first five cycles as a function of positive plate thickness. The per-
actual capacity

cent material efficiency is defined by theoretical capacity x 100, and

Discharge capacity

the charge efficiency is defined as Charge capacity × 100. From Fig. 29
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it can be determined that the material efficiency decreases at a rate of

•33% per mil of plate thickness increase while the charge efficiency de-

creases only .066% per rail. This indicates that the decrease in material

efficiency is due primarily to the fact that the plates accept proport-

ionally less charge as their thicknesses increase.

Five different discharge rates ranging from 2 to 50 amperes were made

at room temperature and three rates each were made at 100° and 30°F. Table

14 lists the charge and discharge parameters by cycle. Figs. 30 through 40

show the discharge curves for each set of cells at each discharge rate.

Table 16 is a compilation of the energy delivered per unit weight and

volume at the various power levels or discharge rates for the three temp-

eratures. The watt-hours per pound is based on the element weight reported

in Table 13 which is the cell weight minus the weight of the cell case,

which is 134 grams. The element weight includes the weight of the electro-

lyte. Similarly the watt-hours per cubic inch does not include the volume

or" thA eel_! n_se_ b1!t _nly th_ vo1_me necessary to encase the cell element.

The cell case was eliminated from the energy calculations so a more direct

comparison could be made among the four plate thicknesses since the five

plate cell contained a .180 inch shim inside the case.

The energy yields per pound of element weight and element volume

versus the rate of power withdrawal at 75°F. are shown in Figs. 42 and 43.

It can be seen that as the rates decrease the cells with the fewer numbers

of plates give the greatest energy yields and that the curves intersect

between 10 and 20 watts or near a nine ampere discharge rate. The fact

that the break even point is near a nine ampere discharge rate is also

shown in Figure 44 where the energy yield per pound versus the number of

plates per cell is plotted for five discharge rates. It is also interest-

ing to note that the curves intersect at about 15 plates per cell. This

indicates that a 15 plate cell is the optimum design to deliver maximum

energy at discharge rates between two and fifty amperes.

Figs. 45 and 46 show the effects of temperature on cell voltage and

energy yields per pound at the two and fifty ampere discharge rates. These

figures show that temperature is an important parameter to take into

49



consideration in battery specifications and design.

If Delco-Remy had continued work on this project, a similar study

would have been made on sterilized cells because of the effects of separa-

tor degradation products on ce]l performance. By increasing the thickness

of the plates, the number of plates per cell is decreased subsequently re-

ducing the separator to active plate material ratio. The present study has

shown that decreasing the number of plates per cell by making them thicker

increases the specific energy yields at moderate discharge rates. The in-

crease in specific energy should be even greater in sterilized cells,

because of the reduction of separator degradation products.

From this work it should be evident that it is necessary to set some

specifications on the ceils or battery such as capacity, discharge rate,

voltage and temperature requirements.

Vl. Conclusions and Recommendations

Cell component evaluation revealed that poor cell performance after

sterilization at 145°C. for 36 hours was due to degradation products from

the separators. The nature of the degradation products were not identified.

Uncharged positive and negative plates survived sterilization. Initially

the negative plates contained a binder of polyvinyl alcohol which produced

high pressures during sterilization. It was found that the PVA binder

could be removed without adversely affecting the negative plates. The

sterilization liquors from nylon, Celcon, and Penton case materials did not

have adverse effects on cell performance, i

Possible new teflon and crosslinked high density polyethylene base

separator materials prepared by Radiation Applications Inc. were sterilized

at 145°C. for 36 hours in potassium hydroxide, washed, dried, and assembled

into cells. The cells containing the polyethylene base separators gave good

capacities and approximately 30 cycles. When cells were built with the

polyethylene base separators and sterilized, the cell capacity was reduced

by about 50%. A ce_l constructed with a teflon base separator also lost
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50%in capacity. Addition of palladium nullified the effects of the

separator degradation products, but the cells exhibited poor stand life.

Presterilization of the separator material did not eliminate the degrada-

tion products or improve cell capacity.

Third electrode voltage readings on the cells during charge and dis-

charge indicated that the degradation products primarily attacked the

positive plates limiting their capacity. Positive plate material was

increased while decreasing the negative material. The capacity of these

cells was greatly improved, proving that the positive plates were

attacked by the degradation products.

It was decided that the battery requirement was one of stand life

rather than cycle life, and the element was redesigned so the positive-to-

negative plate material was in a 1"1 ratio instead of 1:2. This increased

the energy output of sterilized cells from about 12 to 40 watt-hours per

pound using fibrous sausage casing separators. Permion 600 and 300 and

cellophane dad not wlthstand sterilization in cells. The data indicate

there is little difference in the behavior of C19-300 or fibrous sausage

casing separators in sterilized cells. Results also indicate that a forma-

tion charge followed by a discharge to zero volts before sterilization

improves cell performance; however, sterilization produces a capacity loss

of at least 10 to 20%.

Several cells with C19-3OO and FSC separators were put on charged

stand life tests for nine to twelve months and the tests are not complete

yet. Some of the cells have shorted after about six months stand while

some of the cells have passed eight months stand. It is doubtful that

cells with present separator materials will give a satisfactory charged

stand life; therefore, superior separator materials must be developed.

With present separator materials such as C19-300 or FSC it might be

possible to charge sterilized cells after a six or seven month uncharged

stand and obtain 30 to 60 day stands with an energy yield in the range of

30 to 40 watt-hours per pound.
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Sterilization of primary dry charged cells resulted in about a 40%

loss of cell capacity due to decomposition of divalent silver oxide.

Sterilization of dry uncharged secondary cells was not investigated,

but would offer an approach to the problem if wet cells cannot be madeto

withstand sterilization. The chief problem associated with this modeof

operation is the activation of the cells with electrolyte under sterile

conditions without intercell leakage.

Operational temperature and load requirements need to be determined

for optimum cell design and testing. Future testing should include temp-

erature and stand time tests rather than cycling. The possibility of

charging a battery over a six month period could be investigated, or of

charging after a six or more month stand after sterilization.

The plate thickness study on unsterilized cells shows that a greater

energy yield per unit weight and volume can be obtained at low discharge

should be madeon sterilized cells. Specifications on cell or battery per-

formance and temperature of operation are needed for optimum design.

Preliminary tests indicated that nylon was superior to Celcon or

Penton for a case material and that nylon should suffice as a case material.

Under actual conditions nylon cases did not survive 100%of the time.

Although there was someleakage at the case-to-cover seals, the major problem

of concelu_was the fact that the cases were cracking at the corners. Test-

ing of sterilized tensile bars indicated that the nylon becamequite brittle

after sterilization, and it is thought that nylon embrittlement is the chief

cause of case breakage.

Engineering data on materials for cell cases in the sterilization en-

vironment are lacking. Future work should be directed toward obtaining en-

gineering data on materials in the sterilization environment. Probably the

best case could be obtained from glass-epoxy filament winding. General

Electric Companyhas recently announceddevelopment of a new family of

plastics produced by oxidative coupling and given the trade name"PPO".

It is claimed to exhibit good physical properties at temperatures above
370°F. and can be injection molded in conventional equipment.
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TABLE 2

Pressures Developed by R.A.I. Separators During Sterilization at 145°C

XLHDPE XLHDPE Teflon Teflon Teflon

Acrylic Methacrylic Methacrylic Sulfonated Acrylic
Time Acid Acid Acid Styrene Acid
(hours) Graft Graft Graft Graft Graft

1 22 24 28 25 25

2 26 29 34 28 32

3 26 30 35 31 33

4 26 30 35 30 34

5 26 30 35 29 31

8 26 30 35 29 33

9 26 30 35 29 32

24 25 29 36 28 32

28 22 29 38 28 32

30 21 29 38 28 Q

36 20 29 38 28 31

Room

Temp. 0 0 0 0 0
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TABLE 5

Tensile Test Data Nylon Seals

Controls - Unsterilized Samples

CaC12-Ethanol Phenol Epoxy

120 226 * 104.5

144 55 80

121 405 * 77

165 279 * 248

163 353 * 139

150 250 * 95

Samples Sterilized at 145°C. for 36 Hours in 40% KOH

167 * 180 * 0

211 * 187 * 56

174 * 270 * 74

128 * 244 * 59

129 * 136 * 52

70 140 * 70

* Material broke before seals

Data in Pounds (gage)

The nylon test strips were cut from molded cases.

The strips were 3-I/8 inches long, I/2 inch wide, and 1/10 thick.

The seals were made by overlapping the strips I/2 inch.
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TABLE6

Pressures Developed Durin_ Sterilization at 145°C.

Sample 2

KOH+ FSC 15

KOH+ FSC 13

KOH+ FSC 13

KOH 10

KOH 10

KOH* 10

13 Plate Cell 15

9 Plate Cell 12

9 Plate Cell 12

PSIG

Hours at 145°C.

4 8 24 32 36

18 19 21 21 23 4

16 18 21 21 23 2

16 18 21 21 22 2

14 15 15 15 15 0

13 13 12 12 11 0

11 11 5 4 3 0

20 22 25 26 26 5

17 20 24 26 27 8

17 20 23 25 26 7

After Return to

Room Temp.

The electrolyte used in all samples was a 45% potassium hydroxide solution.

* This cell developed a leak in pressure fitting.

Cell Weights Before and After Sterilization

Sample Weight Before Weight After Difference

(grams) (grams) (grams)

KOH + FSC 292.7 291.7 -1.0

KOH + FSC 291.6 290.4 -1.2

K0H + FSC 292.4 291.3 -1.1

KOH 282.0 281.6 -0.4

KOH 284.3 283.8 -0.5

KOH 284.9 284.5 -0.4

13 Plate 572.9 566.0 -6.9

9 Plate 494.5 488.1 -6.4

9 Plate 488.5 482.3 -4.2

58



TABLE7

Pressure Tests on Cell Cases - Zytel 38

Treatment Before

Test; Molding
Machine Size

Test Burst

Temp. Pressure

°c Mode of Failure

4 oz. machine

4 oz. machine

at temp. ½ hr.
annealed

12 oz. machine

12 oz. machine

at temp. ½ hr.
annealed

12 oz. machine

12 oz. machine

heat a_ed 36 hrs.
at 145_C.

12 oz. machine

heat a_ed 36 hrs.
at 145uC.

25 200

25 130

25 205

145 95

145 1o5

145 11o

25 155
25 202

25 2OO

145 95

145 105

145 115

25 250
25 100

25 80
25 120

25 130

25 50
25 50
25 4O
25 5O

145 50

145 70

145 170

145 50

145 60

145 80
145 80

case-cover seal

case-cover seal

wall at corners

case-cover seal

case-cover seal

case-cover seal

wall at corners

wall at corners

wa31 at corners

case-cover seal

case-cover seal

case-cover seal

Did not fail

wall at corners

wall at corners

wall at corners
wall at corners

wall at corners

wall at corners

wall at corners

wall at corners

case-cover seal

case-cover seal

wall at corners

case-cover seal

case-cover seal

case-cover seal

case-cover seal
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TABLE 8

Tensile-Strain Data

Type of Sterilized in 14_°C 40% KOH 36 Hrs.

Plastic Tensile Strength Strain

P.S.I. _ Elongation

Zytel 38 5840 5 - 10

5500

5540

5250 "
7000 "

5300 "

5540 "
6860 "

6900 "
6600 "

7350 "

6000 "

6160 "

5760 "

7210 "

6940 "

4960 "

6320 "

5950 "

Zytel 121 7160 5
6340 10

6180 5

5800 15

Zytel 101 7450 10
7450 25

74o0 20

Teflon 2080 375

Penton 5740 65

5730 60

575O 4O

5720 60

Celcon 9000 100

910o 110

9100 75
9110 100

Polypropylene 6130 100

5610 80

5780 150

5350 62

All samples were tested at room temperature.

Sterilized and Unsterilized Plastics

Unsterilized

Tensile Strength Strain %

P.S.I. Elon_ation

7500 180-210

7450 "

7050 "

7050

7700 "

7260 "

7580 "

7800 "

9650 290

9550 150

9300 210
9260 275

2080 350

5710 25

5720 30

9460 60

9370 25

6OOO 7

6000 10

6050 10
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TABLE 12

Capacities of Primary Cells

Sterilized at 135°C.

for 36 Hours
Controls Sterilized at 145°C.

for 36 Hours

Cell Nr_ Cap. a.h_ Cell Nr. Cap. a.h. Cell Nr, Cap_ a.h.

C-1 10.8 145.','1 6.8 135-1 7.1

C-2 11.2 145-2 6.3 135-2 7.3

C-3 11.2 145-3 5.8 135-3 7.2

C-4 11.1 145-4 6.1 135-4 short ed

0-5 11.1 145-5 6.5 135-5 7.1

C-6 11.1 145-6 6.3 135-6 7.1

Avg. Cap. 11.1 6.2 7.1

% Loss of Capacity 44 36

The cells were discharged at ten amperes to 1.30 volts at room

temp eratur e.

Cells filled with 40% KOH after being sterilized dry_ unsealed.
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TABLE 14

PLATE THICKNESS STUDY

Description of Charge and Discharge Variables by Cycle and Cell Failure

Cycle Days

1 1

2 6

3 13

4 16

5 26

6 34

7 43

8 48

9 55

10 63

11 69

12 77

13 83

14 91

15 1o6

16 114

17 125

18 140

19 147

20 152

21 156

22 163

23 236

5 Plate Cells

7 Plate Cells

9 Plate Cells

Charge (at 75°F unless noted)

1.5 Amp to 2.1 v.

2 Amp to 2.1 v.

2 Amp to 2.1 v; 1 Amp to 2.1 v.

1.5 Amp to 2.1 v; I Amp to 2.1 v;

0.5 Amp to 2.1 v.

100°F.; I Amp to 2.1 v;

0.5 Amp to 2.1 v.

I Amp to 2.1 v; 0.5 Amp to 2.1 v.

1 Amp to 2.1 v; 0.5 Amp to 2.1 v.

I Amp to 2.1 v; 0.5 Amp to 2,1 v.

I Amp to 2.1 v; 0.5 Amp to 2.1 v.

I Amp to 2.1 v; 0.5 Amp to 2.1 v.

I Amp to 2.1 v; 0.5 Amp to 2.1 v.

I Amp to 2.1 v; 0.5 Amp to 2.1 v.

I Amp to 2.1 v; 0.5 Amp to 2.1 v.

I Amp to 2.1 v; 0.5 Amp to 2.1 v.

I Amp to 2.1 v; 0.5 Amp to 2.1 v.

I Amp to 2.1 v; 0.5 Amp to 2.1 v.

I Amp to 2.1 v; 0.5 Amp to 2.1 v.

I Amp to 2.1 v; 0.5 Amp to 2.1 v.

1 Amp to 2.1 v.

1 Amp to 2.2-2.3 v; overcharged

I Amp to 2.1 v.

1 Amp to 2.1 v o

Discharge Rate and Temp.

9 Amp to 1.3 v. 75°F

9 Amp to 1.3 v. 75°F

9 Amp to 1.3 v. 75°F

9 Amp to 1.3 v. 75°F

9 Amp to 1.3 v. 75°F

50 Amp to 0.9 v. 75°F

25 Amp to 1.1 v. 75°F

5 Amp to 1.3 v. 75°F

50 Amp to 0.9 v. 75°F

50 Amp to 0.9 v. lO0°F

9 Amp to 0.9 v. 30°F

2 Amp to 1.3 v. 75°F

2 Amp to 1.3 v. 75°F

50 Amp to 0.9 v. 30°F

2 Amp to 1.3 v. 30°F

5 Amp to 1.3 v. IOOOF

2 Amp to 1.3 v. 100°F

15 Amp to 1.3 v. 75°F

10 Amp to 1.3 v. 75°F

15 Amp to 1.3 v. 75°F

15 Amp to 1.3 v. 75°F

15 Amp to 1.3 v. 75°F

Cycle 34 (same charge and discharge as Cycle 22)

q_ll Failpr_

#3 shorted 12th chg. #I shorted 21st chg. #2 shorted 22 chg.

#1, 2 shorted 16th chg. #3 shorted 26th chg.

#2 shorted 14th chg. #3 shorted 18th chg. #1 shorted 26th chg.

13 Plate Cells #2 shorted 29th chg. #1 shorted 30th chg. #3 shorted after 34th chg.
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FIGURE 1 

Stainless Steel Sterilization Container 
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FIGURE 8

Capacity vs. Cycle - R.A.I. Separator
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FIGURE 9 

Picture  Interior of Zytel  101 Case After S t e r i l i z a t i o n  
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FIGURE 11

Perfor_mnce of Standard Cells Activated sith
Liquor from Separators Sterilized at 135 C.
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FIGURE 13 

Test Cup and Holding Fixture 
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FIGURE15

Cross Section of Test Cup and Terminal Design
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FIGUPS 16 

Cover and Holding Fixtures - Terminal Seal 
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PIGURE 17 

Prototype Case and Cover For Seal  Evaluation 
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FIGURE 18 

Old Case and Cover 
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FIGURE 20 

Clamping Fixture For Case-todover Seal 
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FIGURE 21 

Case Pressure Tested a t  90 p s i  a f t e r  36 Hours at lL+.r”C 
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FIGURE 24

New Cell Case Design

\
=J.0_9 MA PA, RTINE_

OVEI_' DRAFT

5.15_

!
2.B_O

.I"Z5

5.90?_
5.920

r_.045
_.0Z'I

LINE

.747

I
i

.IZ6

A, LL aNTEi_NA_L RADII

ALL EXTERNAL I:_ADII

94

OTI-IEI:k:'_V I%E. 51DECIFIED.

OTHER'_IVI%E. SPECIFIED.



FIGURE 25

New Cover Design
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Plate Thickness Study
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SEPARATORSCREENINGTESTS



I. Separator Screenin_ Tests

The development of procedures for determining resistivity, potassium

hydroxide diffusion, and zinc dendrite growth through separator membranes

were discussed in detail in Delco-Remy Report No. Z#+80-X, which was for-

warded to J.P.L. with the proposal for the instant program; therefore, only

brief explanations of these procedures are presented here. The results of

screening tests performed on several types of membranes are discussed in

detail in the Second Quarterly Progress Report of Delco-Remy's Air Force

Contract(S!

A. Resistance Measurement in KOH

The resistance measuring cell and associated equipment are shown

in Figure I. The resistance cell consists of two lucite cells which

were bolted together. A I/8 inch diameter hole was in each of the

half cells and the sample membrane was securely clamped between the

half cells over the I/8 inch holes. The cell was flooded with elec-

trolyte from a plastic bottle through tubes in back of the cell. A

current of 0.02 amperes was passed through the cell between cadmium

"working" electrodes at opposite ends of the cell from an external

D.C. power supply. The voltage drop between two standard reference

electrodes (mercury/mercuric oxide) positioned via plastic tubes on

each side of the membrane was measured with and without the membrane

in place. Readings in millivolts were recorded with a Rubicon

potentiometer. The blank reading was subtracted from the reading

with the membrane in place and the resistance was calculated from

differences in readings using ohm's law as in the following equation:

EM - EB
R - × A = milliohms in 2

I

where EM = millivolts with membrane in place

(I) J. J. Lander, et al., Applied Research Investigation of Sealed Silver-

Zinc Batteries, Contract Nr. AF33(657)-IOA63, Project Nr. 8173, Task

Nr. 817304-21, November 19, 1963



EB - mi_livolts blank reading
I = current in amperes
A = area of diffusion hole in2

B. Diffusion of KOH Through Membranes

The apparatus used for determining the diffusion of KOH through

membranes is shown in Figure 2. The diffusion of KOH through sample

membranes was based on the rate of mass transfer through the membrane

due to a high concentration gradient.

After soaking the membrane overnight in deionized water, the

membrane was placed between 1,/8 inch diameter orifices in the center

of the flanges of the two cylindrical lucite cells, and the cells were

bolted securely together. Approximately 230 milliliters of deionized

water was placed in the left cell, and 230 milliliters of 45% KOH was

added in the right cell. The cell was positioned over a magnetic

stirrer and glass and calomel electrodes were inserted in the entry

ports on the water side of the cell. The change in concentration of

the deionized water was measured with a pH meter and recorded at five

minute intervals for the first 20 minutes, then every ten minutes for

50 minutes additional. When the concentration is plotted versus time,

a straight line results. Typical curves are shown in Figure 3. The

slope of the curve is represented by M - AC Since the volume is
At"

known and the change in volume is negligible, the quantity of KOH

passing through the membrane can be represented by V A C __M
A--_: At' and

since the area is known, the mass transfer per unit time and area is

given by:

AM AC V

A At - At x A - moles N0H per square inch minute

where M = moles KOH

t = time in minutes

C = concentration in moles/liter



V = volume of water in liters

A = area of diffusion orifice in square inches

C. Diffusion of Zincate Ions Through Membranes

The procedure for determining the diffusion of zincate ions

through membranes was similar to the determination of KOH diffusion

except the change in concentration of the zinc ion was measured

potentiometrically, based on the fact that the electrode potential

of the zinc/zinc ion couple at constant hydroxyl ion concentration

varies by .0295 volts for every ten-fold change in zincate ion

concentration.

The diffusion apparatus is illustrated in Figure 4. A disc

of the membrane to be measured was cut and soaked in water for

several minutes to swell the membrane. The sample was placed be-

tween the flanges of the cylindrical lucite cells with diffusion

orifices of 2.33 in 2. The cell was bolted together and mounted on

a magnetic stirring unit. Zincate free potassium hydroxide was

added to the right side of the cell. A Hildebrand half cell for

the mercury/mercuric oxide reference electrode and an amalgamated

zinc indicator electrode were inserted in the entry port in the

zincate-free side of the cel_. Propane gas was used to blanket

the cell to keep air out. The potential between the reference and

the indicator electrode was observed a few minutes on a Sargent re-

corder on the 250 millivolt scale to see that the system was oper-

ating correctly. When the starting voltage was found to be steady,

a standard one molar zinc oxide in 45% potassium hydroxide solution

was added to the left side of the cell. Diffusion time was measured

from the time at which the voltage trace on the recorder began to

descend. Since the calibration curve for the potential readings

was in moles per liter, the diffusion of zincate ion is given by:

CI - C2
M - • V

t x A



where M = moles in -z min-I

CI = initial concentration of zincate ion in moles/liter

C2= final concentration of zincate ion in moles/liter
t = time in minutes

V = volume in liters

A = area in square inches

D. Zinc Dendrite Penetration of Separator Materials

Since cell failure is often the result of short circuits due to

the growth of zinc dendrites through the separator, an accelerated

test was developed in an effort to qualitatively measure a separator

material's resistance to penetration by zinc dendrites. A Hull cell

manufactured by the R. O. Hull Company, Rocky River, Ohio was used

in this study in order to evaluate a sample over a current density

range on one test. The Hull cell was primarily designed to study the

effect of current density in electroplating. The geometric config-

uration of the cathode end of the cell is such that when a current of

one ampere flows through the cell, a current density range of 3.5 to

280 milliamperes is obtained across the face of the cathode. In the

zinc dendrite test, both the anode and cathode were cut from .O10 inch

rolled zinc sheet. The separator material under test was wrapped around

the zinc cathode and fastened on the back side with scotch tape. The

cell was filled with a 45% solution of potassium hydroxide saturated

with zinc oxide.

The test results were determined by visually observing the time of

penetration of zinc dendrites through the separator material and the

current density range. The maximum time the test was run was arbitrar-

ily set at four hours. Qualitatively the most easily penetrated separa-

tor materials would be expected to fail first in cells because of shorts.

The Hull cell is shown in Figure 5.
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FIGURE 3

KOH Diffusion Curves

TFE-A_rylic Acid Graft
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ABSTRACT

Five small screening sample membranes were prepared.

Three of these samples were based upon Teflon TFE while

two were based upon crossllnked high density polyethylene.

Methacryllc acid grafts and acrylic acid grafts of

both the Teflon and polyethylene were prepared. Addition-

ally, a sulfonated styrene graft based upon Teflon was

prepared.

The electrical resistances, tensile strengths and

exchange capacities of the membranes were measured both

before and after a simulated sterilization. An infrared

curve of each membrane also was taken before and after the

sterilization.

All samples showed slight to moderate decreases in

exchange capacity. Four samples showed slight to moderate

decreases in electrical resistance but one sample, the

methacryllc acid graft on crosslinked high density poly-

ethylene, demonstrated an apparent increase in resistance.

No qualitative change was observed in the infrared

curve of any sample.

Only one sample, the sulfonated styrene graft on

Teflon TFE, became too brittle to handle after sterili-

zation.

As a result of Delco-Remy's evaluation of these

-1-



screening samples, two 120 ft.2 samples were submitted.

The materials selected by Delco-Remy for these samples

were the two crosslinked polyethylene based samples.
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1.O INTRODUCTION

This report covers the first two phases of our

program to develop silver-zinc battery separators capable

of withstanding sterilization temperatures.

Using a radiation induced graft copolymerization

technique to prepare samples, an attempt was made to

determine the optimum membrane composition.

The base polymers studied were Teflon(TFE), chosen for

its known temperature stability, and crosslinked high

density polyethylene. The latter polymer, chosen because

of its relatively high melting point, was additionally

crosslinked to provide further dimensional stability at

high temperature.

Three monomer systems were c_sen. Methacryllc acid

and acrylic acid were selected in order to discover which

method of degradation, depolymerization or oxidation,

might be the more critical under the sterilization con-

ditions. Methacrylic acid, having a methyl group in place

of the alpha hydrogen of acrylic acid is the more

oxidation resistant. It is, however, more prone to thermal

depolymerlzation than acrylic acid.

The third monomer selected was styrene. This monomer

was grafted only to a Teflon base polymer. Sulfonation

after grafting converts the polystyrene to polystyrene

sulfonic acid yielding an ion conductive membrane.

-5-



This type of film was included because of the possi-

bility that the weak acid membranes would be decarboxylated

under the sterilization conditions. If the styrene sulfonlc

acid were desulfonated as well, it was anticipated that

the product would be polyvinylphenol, which wou_d have

still provided a conductive membrane.

2.0 EXPERIMENTAL PROGRAM - PHASE I

2.1 Membrane Preparation

The preparative procedures developed to produce the

required screening samples are listed in detail on the

following pages.
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Acrylic Acid Graft on Crosslinked High Density Polyethylene

(Sample#157-87)

Preparative Procedure

Materials:

A. 0.9 mil high densltyopolyethylene (0.96 density)

B. Glacial acrylic acid

C. Toluene, benzene or xylene

D. Carbon tetrachloride

E. Paper toweling

Procedure:

1. Irradiate A under the beam of a 2 Mev Van de Graaff

accelerator using 2 Mr/pass, until a total dose of

B0 Mrads is accumulated.

2. Roll the irradiated A film in E.

3. Prepare a mixture of B, C, and D such that

B = 25 pts., D = l0 pts., and C = 65 pts. by volume.

4. Immerse roll A - E in solution B - C - D.

5. Irradiate at 27,000 r/hr. for 72 hours.

6. Wash the film free of clinging homopolymer with

5% KOH, rinse in water and dry at 40°C. for 4 hours.
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Methacrylic Acld Graft on

Crosslinked Hlgh Density Polyethylene

(Sample # 157-92)

Preparative Procedure

Materials:

A. 0.9 mll hlgh density _(0.96) polyethylene film

B. Glacial methacryllc acld

C. Toluene, benzene or xylene

D. Carbon tetrachloride

E. Paper toweling

Procedure:

1. Irradiate A under the beam of a 2 Mev Van de Graaff

accelerator using 2 Mr/pass, until a total dose of

30 ,-,_M_°__ is _'Im'_ atedo__,,_

2. Roll the irradiated A fllm In E.

3. Prepare a mixture of B, C, and D such that

B = 30 pts., C = 60 pts. and D = I0 pts. by volume.

4. Immerse roll A - E in solution B - C - D.

5. Irradiate at 36,500 r/hr. for 72 hours.

6. Wash the film free of clinging homopolymer wlth

5% KOH, rinse In water and dry at 40°C. for 4 hours.
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Acrylic Acid Graft on Teflon(TFE)

(Sample # 155-79-3)

Preparative Procedure

Materials:

A. Acrylic acid (glacial)

B. Toluene

C. 1 mil fusion cast Teflon(TFE) film

D. Paper toweling

Procedure:

1. Roll up C in D.

2. Prepare a solution of A in B such that the ratio

is 18% A to 82% B by volume.

3. Immerse roll C - D in solution A - B.

4. Irradiate twenty-four hours at 42,900 r/hr.

5. Wash the film in 5% KOH to remove clinging

homopolymer, rinse with water and dry at h0°C.

for 2 hours.

-7-



Methacrylic Acid on Teflon(TFE)

(Sample # 155-85)

Preparative Procedure

Materials:

A. Glacial methacrylic acid

B. Toluene

C. I mil fusion cast Teflon(TFE) film

D. Paper toweling

Procedure:

1. Roll up C in D

2. Prepare a solution of A in B such that the ratio

is 30 parts A to 70 parts B by volume.

3. Immerse roll C - D in solution A - B.

4. Irradiate 20 hours at 36,500 r/hr.

5. Wash in 5% K0H to remove clinging homopolymer and

dry at 40°C. for 2 hours.
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Sulfonated Styrene on Teflon(TFE)
(Sample # 155-79-5)

Preparative Procedure

Materials:

A. Polymer grade styrene monomer

B. Toluene

C. Methanol

D. 1 mil fusion cast Teflon film

E. Paper toweling

F. Chlorosulfonic acid

G. Chloroform

Procedure:

i. Roll up D in E

2. Prepare a solution of A, B, and C such that the

ratios are 30% A:35% B:35% C by volume.

3. Immerse roll D - E in solution A - B - C.

4. Irradiate at 31,100 r/hr. for 24 hours.

5. Wash in benzene.

6. Repeat steps I. through 5.

7. Prepare a 20% solution of F in G.

8. Treat the grafted film in solution F - G at

50°C. for 8 hours.

9. Wash in benzene, then in water and dry at room

temperature.
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2.2 Sample Testing

The effects of sterilization on the membranes

were followed by measuring the electrical resistance,

exchange capacity, tensile strength and physical dimensions

before and after sterilization. The infra-red absorption

curve of each sample was also taken before and after

sterilization.

2.3 Sterilization

The sterilizations were performed in Teflon containers

which in turn, were enclosed in stainless steel bombs.

The containers were filled with 45% KOH, the samples

immersed and the bombs sealed. The bombs were then placed

in an oven set at 145°C. for 48 hours.

2.4 Exchange Capacity

The exchange capacities of the samples were determined

by the following procedure.

The test sample was first equilibrated 24 hours in a

large volume of O.IN HCI. The sample was then rinsed in

delonized water and dried. The dry sample was then

equilibrated 24 hours in a measured volume of standardized

NaOH.

An aliquot of the Na0H solution in which the sample

was equilibrated was then titrated with a known HC1

solution. The decrease in the NaOH content of the solution

is taken as equivalent to the number of exchange sites
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on the sample.

The exchange capacity is expressed as:

_N x V

Exchange Capacity = NaOH NaOH = meq/gm.
dry wgt. of film

2.5 Tensile Measurements

The tensile strengths of the samples were determined

after 24 hour equilibration in 40% KOH. Dog-bone shaped

samples, 3" x 1/2" in the neck area, were cut after the

samples were equilibrated and the tensile strength measured

on a Dillon Tester. The Jaw speed used was 2"/minute.

2.6 Dimensional Changes

The areas of the samples equilibrated with 40% K0H

were simply measured with a steel rule graduated in

millimeters.

The results of these tests are listed in Table 1.
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3.0 SUMMARY OF PHASE I

All samples show a decrease in exchange capacity.

A decrease in resistance was found in all but one case.

The probable result is that the effective pore size

increases slightly due to fragmenting off of portions of

the grafted chains.

The Teflon samples all exhibited significant losses

in physical properties. The sulfonated styrene graft on

Teflon showed the most drastic loss of elasticity. This is

probably due to degradation during the radiation grafting

step. Small, grafted, (poly)-tetrafluoroethylene chain

fragments are probably leached out during sterilization.

As a result of these data and their own evaluation,

Deico ........-nemy selected _ ...... i_^ _ m_eh_r]_ _d

grafts on crosslinked high density polyethylene for

further evaluation.

2
These were reproduced as 120 ft. samples. The test

data for these samples are presented in Section 4.0.
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4.0 PHASE II - PREPARATION AND TESTING OF THE 120 FT 2
SAMPLES

Procedures 157-87 and 157-92 (Section 2.0) were

adapted to large scale production procedures.

The membranes were tested by taking samples from

either end of the membrane, prior to washing and drying.

These were then washed and dried along with the larger

samples.

The pieces taken from either end of the long samples

were then tested using the same procedures as described

in Section 2.0 of this report. These data are presented

in Table 2.

5.0 SUMMARY - PHASE II

The large scale samples were reasonable reproductions

of the smaller samples.
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